Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Riverside Physicists Pave the Way for Graphene-based Spin Computer

Atomically-thin insulating barriers greatly improve spin injection into graphene. Top image shows flow of electrons (dotted line) when no insulator is used. Flow of electron spin polarization is greatly improved (bottom image) when a magnesium oxide insulator is used as shown. Image credit: Kawakami lab, UC Riverside.
Atomically-thin insulating barriers greatly improve spin injection into graphene. Top image shows flow of electrons (dotted line) when no insulator is used. Flow of electron spin polarization is greatly improved (bottom image) when a magnesium oxide insulator is used as shown. Image credit: Kawakami lab, UC Riverside.

Abstract:
Roland Kawakami's lab is first to achieve "tunneling spin injection" into graphene

UC Riverside Physicists Pave the Way for Graphene-based Spin Computer

Riverside, CA | Posted on October 14th, 2010

Physicists at the University of California, Riverside have taken an important step forward in developing a "spin computer" by successfully achieving "tunneling spin injection" into graphene.

An electron can be polarized to have a directional orientation, called "spin." This spin comes in two forms - electrons are said to be either "spin up" or "spin down" - and allows for more data storage than is possible with current electronics.

Spin computers, when developed, would utilize the electron's spin state to store and process vast amounts of information while using less energy, generating less heat and performing much faster than conventional computers in use today.

Tunneling spin injection is a term used to describe conductivity through an insulator. Graphene, brought into the limelight by this year's Nobel Prize in physics, is a single-atom-thick sheet of carbon atoms arrayed in a honeycomb pattern. Extremely strong and flexible, it is a good conductor of electricity and capable of resisting heat.

"Graphene has among the best spin transport characteristics of any material at room temperature," explained Roland Kawakami, an associate professor of physics and astronomy, who led the research team, "which makes it a promising candidate for use in spin computers. But electrical spin injection from a ferromagnetic electrode into graphene is inefficient. An even greater concern is that the observed spin lifetimes are thousands of times shorter than expected theoretically. We would like longer spin lifetimes because the longer the lifetime, the more computational operations you can do."

To address these problems, in the lab Kawakami and colleagues inserted a nanometer-thick insulating layer, known as a "tunnel barrier," in between the ferromagnetic electrode and the graphene layer. They found that the spin injection efficiency increased dramatically.

"We found a 30-fold increase in the efficiency of how spins were being injected by quantum tunneling across the insulator and into graphene," said Kawakami, who is also a member of UC Riverside's Center for Nanoscale Science and Engineering. "Equally interesting is that the insulator was operating like a one-way valve, allowing electron flow in one direction - from the electrode to graphene - but not the other. The insulator helps to keep the injected spin inside the graphene, which is what leads to high spin injection efficiency. This counterintuitive result is the first demonstration of tunneling spin injection into graphene. We now have world record values for spin injection efficiency into graphene."

Study results appear this week in Physical Review Letters.

In their experiments, the Kawakami lab also made an unexpected discovery that explains short spin lifetimes of electrons in graphene that have been reported by other experimental researchers.

Kawakami explained that spin lifetimes are typically investigated through an experiment, known as a Hanle measurement, which uses a ferromagnetic spin detector to monitor the electron spins in graphene as they change direction in an external magnetic field. When his team placed a tunnel barrier in between the ferromagnetic spin detector and the graphene, the spin lifetime from the Hanle measurement jumped up to about 500 picoseconds (compared to typical values of 100 picoseconds) even though the researchers did nothing different to the graphene itself.

"People usually assume that the Hanle measurement accurately measures the spin lifetime, but this result shows that it severely underestimates the spin lifetime when the ferromagnet is touching the graphene," said Wei Han, the first author of the research paper and a graduate student in Kawakami's lab. "This is good news because it means the true spin lifetime in graphene must be longer than reported previously - potentially a lot longer."

Kawakami explained that, theoretically, graphene has the potential for extremely long spin lifetimes.

"This lifetime could be microseconds long," he said. "A long lifetime is a special property of graphene, making it a very attractive material for a spin computer."

Growing insulating barriers on graphene is neither a simple nor easy process. The insulator tends to form clumps on the graphene sheet, due in part to graphene's reluctance to form strong bonds with materials. To circumvent the problem of clumping, in their experiments the Kawakami team layered the graphene sheet with titanium (about half an atom thick) using a method called molecular beam epitaxy. The titanium layer, the researchers found, prevented the insulator from clumping on graphene or sliding off it.

Next in the research, the Kawakami lab plans to demonstrate a working spin logic device

Han, a recipient of the Leo Falicov Award from the American Vacuum Society, and Kawakami were joined in the study by Kyle Pi, Kathy McCreary, Yan Li, Jared Wong, and Adrian Swartz of UCR. Grants to Kawakami from the National Science Foundation and the Office of Naval Research supported the study.

####

About UC Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of over 19,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050

Copyright © UC Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Spintronics

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Announcements

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE