Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shell Partners with MIT to Pursue New Energy Technology Solutions

Gerald Schotman, chief technology officer, Royal Dutch Shell, signs an agreement with the Massachusetts Institute of Technology (MIT) to invest $25 million in the research and development of high value, sustainable technologies designed to drive innovation in energy delivery. (PRNewsFoto/Shell)
Gerald Schotman, chief technology officer, Royal Dutch Shell, signs an agreement with the Massachusetts Institute of Technology (MIT) to invest $25 million in the research and development of high value, sustainable technologies designed to drive innovation in energy delivery. (PRNewsFoto/Shell)

Abstract:
MIT Energy Initiative to receive $25 million to fund research and collaboration

- Drives innovative technology solutions addressing the global energy challenge

- Joins world-class industry and academic leader in the expansion of high value, sustainable technologies

- Utilizes open innovation, leveraging external expertise in future energy delivery and technology

Shell Partners with MIT to Pursue New Energy Technology Solutions

Boston, MA | Posted on October 14th, 2010

Shell and the Massachusetts Institute of Technology (MIT) today signed an agreement to invest $25 million in the research and development of high value, sustainable technologies designed to drive innovation in energy delivery.

"Both Shell and MIT are globally recognized innovation leaders. This collaboration accents Shell's commitment to develop new technologies and drive innovative solutions to address the global energy challenge," said Gerald Schotman, chief technology officer, Royal Dutch Shell. "Our collaboration with MIT will form another important building block in strengthening Shell's global technology leadership."

Beginning this year, the research collaboration will fund a suite of projects at $5 million per year for the coming five years. Those projects will focus on advanced modeling, earth science, biofuels, nanotechnology and carbon management.

"The lack of access to affordable energy poses a significant barrier to economic advancement around the globe. Together with the rapidly accelerating demand for energy, the need to develop environmentally sensitive and sustainable energy resources becomes increasingly acute. Our collaboration with Shell will drive energy innovations with the potential for significant, real-world impact," said Susan Hockfield, president, MIT.

As part of its longer-term focus, the collaboration will address future and emerging technologies that demonstrate game-changing potential for the energy industry. The collaboration will focus on a broad array of existing and new oil and gas technologies, including next-generation applications in nanotechnology, biochemistry, electronics and computer modeling. Other focus areas will include research into water treatment improvements, greater fuel efficiency, new solar energy applications and enhanced catalytic technology for advanced fuel cells and smart grids. The partners aim to develop novel sensors to detect physical and chemical properties under extreme and remote conditions.

"Shell has earned a reputation for advancing a broad portfolio of important energy technologies and for a long-term view of how the global energy system will and should evolve," said Professor Ernest J. Moniz, director of MIT Energy Initiative. "We are excited about this opportunity to significantly expand our research and education collaboration."

Note to editors: A fact sheet follows with more details on the program and areas of technical research.

* Supplying energy for an increasing global population will be difficult as energy demand is expected to double by 2050.

* The Shell/MITEI collaboration addresses this global energy challenge by driving innovative technologies that respond to the need to transition the global energy system and to continuously drive innovation in energy conversion, distribution, and storage.

* The agreement establishes Shell as a Founding Member of the MIT Energy Initiative (MITEI), an extension of the collaborative projects Shell has been conducting with MIT in a variety of basic and applied research areas since 2002.

* The collaboration helps Shell further realize its technology strategy that emphasizes open innovation and collaborative research with universities, institutes, and industry partners to deliver effective energy solutions.

* A specific area of interest is the impact of extreme wave action on deepwater floating structures. Research aims to develop algorithms to predict hydrodynamic loads and the motions of floating installations with the goal of better understanding fracture characteristics of high-strength steel and reducing the weight of offshore installations.

* The collaboration will also pursue technological solutions on how to enhance the understanding of subsurface conditions.

* Inspired by recent breakthroughs in pattern recognition and super-resolution data analysis, new algorithms will be developed to enhance the analysis of remote sensing data and facilitate fast extraction of geologic information from seismic data.

* Research will seek more efficient simulation methods to model hydrocarbon reservoirs. Advanced signal processing techniques will be developed to improve the characterization of the subsurface through ambient noise measurements and currently unused, incoherent parts of seismic data.

* Through MIT, Shell will have access to world-class research that will complement its efforts in the early identification of unexpected technologies and the possibilities created by the integration of technologies from different industries and disciplines. MIT offers leading research capacity at the interfaces of the major sciences relevant to this energy transition.

Cautionary Statement

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document "Shell", "Shell group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. ''Subsidiaries'', "Shell subsidiaries" and "Shell companies" as used in this document refer to companies in which Royal Dutch Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as "associated companies" or "associates" and companies in which Shell has joint control are referred to as "jointly controlled entities". In this document, associates and jointly controlled entities are also referred to as "equity-accounted investments". The term "Shell interest" is used for convenience to indicate the direct and/or indirect (for example, through our 34% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This document contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as ''anticipate'', ''believe'', ''could'', ''estimate'', ''expect'', ''intend'', ''may'', ''plan'', ''objectives'', ''outlook'', ''probably'', ''project'', ''will'', ''seek'', ''target'', ''risks'', ''goals'', ''should'' and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this document, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for the Group's products; (c) currency fluctuations; (d) drilling and production results; (e) reserve estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory effects arising from recategorisation of reserves; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this document are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell's Annual Report and Form 20-F for the year ended December 31, 2009 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this press release, October 13, 2010. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this document.

The United States Securities and Exchange Commission (SEC) permits oil and gas companies, in their filings with the SEC, to disclose only proved reserves that a company has demonstrated by actual production or conclusive formation tests to be economically and legally producible under existing economic and operating conditions. We use certain terms in this document that SEC's guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

####

About Royal Dutch Shell plc
Royal Dutch Shell plc is incorporated in England and Wales, has its headquarters in The Hague and is listed on the London, Amsterdam, and New York stock exchanges. Shell companies have operations in more than 100 countries with businesses including oil and gas exploration and production; production and marketing of Liquefied Natural Gas and Gas to Liquids; manufacturing, marketing and shipping of oil products and chemicals and renewable energy projects including wind and solar power. For further information, visit www.shell.com.

About MITEI
The MIT Energy Initiative (MITEI), established in September 2006, is an Institute-wide initiative designed to help transform the global energy system to meet the needs of the future and to help build a bridge to that future by improving today's energy systems. The MITEI program includes research, education, campus energy management and outreach activities that cover all areas of energy supply and demand, security and environmental impact.

Through its research program, MITEI addresses a critical link in the energy innovation chain—the pairing of MIT's world-class research teams with the best in industry who will be responsible for moving the products of this collaboration into the energy marketplace. The structure of MITEI supports research that addresses key industrial concerns including the development through basic research of enabling energy technologies that have the potential to address multiple energy challenges; the delivery of energy products and services at scale; and the provision of energy products and services in highly complex policy, legal and regulatory environments.

For more information, please click here

Copyright © PrNewswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project