Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Researchers show how cells open 'doors' to release neurotransmitters

A schematic model of a fusion pore opening.
A schematic model of a fusion pore opening.

Like opening a door to exit a room, cells in the body open up their outer membranes to release such chemicals as neurotransmitters and other hormones.

Cornell researchers have shed new light on this lightning-quick, impossibly small-scale process, called exocytosis, by casting sharp focus on what happens right at the moment the "doors" on the cell wall open.

By Anne Ju

Researchers show how cells open 'doors' to release neurotransmitters

Ithaca, NY | Posted on October 13th, 2010

Publishing online Oct. 11 in Proceedings of the National Academy of Sciences, researchers led by Cornell's Manfred Lindau used a combination of molecular biology, electrophysiology, microfabricated electrochemical sensors and advanced microscopy to elucidate exocytosis of noradrenaline. This is a neurotransmitter released from the adrenal gland by a type of neuroendocrine cell called a chromaffin cell.

Lindau, professor of applied and engineering physics, studies the properties of exocytosis by looking at how packets of chemicals called vesicles adhere to the cell wall and open the door between the vesicle interior and cell's exterior. This "door" is called the fusion pore.

"Biochemists have been working on experiments to identify what proteins and molecules are the main players in this mechanism of release," Lindau said.

It turns out that neurotransmitter release is largely regulated by a set of proteins called SNARE proteins, and one called synaptobrevin is located on the cell's vesicle membrane. The synaptobrevins bind with other proteins called syntaxin and SNAP-25, which are located in the plasma membrane that encloses the cell. When the cell is excited and the neurotransmitter release is triggered, these proteins together are believed to open the fusion pore.

Lindau's team of researchers used genetically altered mouse embryos that lacked synaptobrevin and introduced viruses with modified versions of the protein into their experiments. They then imaged and studied the release function of the cells for the different versions of the synaptobrevins.

They discovered that one end of the synaptobrevin -- the part that anchors it in the vesicle membrane -- is pulled deeper into the vesicle membrane when the cell is stimulated. This movement is what temporarily changes the structure of the membrane and allows the opening of the fusion pore and neurotransmitter release. It had previously been thought that the fusion pore originates by an indirect effect of the SNARE protein in the membrane lipids. Lindau's experiments have shown that the vesicle membrane component of synaptobrevin is the active part of the molecular nanomachine that forms the fusion pore.

To continue visualizing the molecular details of this complex process, Lindau is working on sabbatical at the University of Oxford with professor Mark Sansom on molecular dynamics and computer simulations of the SNARE proteins and neurotransmitter exocytosis.

The research published in PNAS was funded primarily by the National Institutes of Health and the Cornell Nanobiotechnology Center, which is supported by the National Science Foundation. The paper's authors include former Cornell graduate students Annita Ngatchou and Kassandra Kisler, postdoctoral associates Qinghua Fang and Yong Zhao, and collaborators from the Max Planck Institute for Biophysical Chemistry, the University of Saarland in Germany and the University of Copenhagen.


For more information, please click here

Media Contact:
Joe Schwartz
(607) 254-6235

Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Horizontal magnetic tunneling in a field-effect device integrated on Silicon October 3rd, 2015

Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure October 2nd, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015


Sniffing out cancer with improved 'electronic nose' sensors October 2nd, 2015

New Processes in Modern ReRAM Memory Cells Decoded October 1st, 2015

Researchers measure how specific atoms move in dielectric materials October 1st, 2015

Researchers create first entropy-stabilized complex oxide alloys September 30th, 2015


SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Rice announces $150 million in strategic research initiatives: Plan includes campuswide investments, new hires in data science, nanotechnology September 22nd, 2015

A quantum lab for everyone: Modern science as a photorealistic online game September 17th, 2015

UO research dollars climbed in FY 2015: Buoyed by an uptick in federal awards, the university saw gains in its overall sponsored research funding and continued high proposal counts in 2014-2015 September 17th, 2015

Molecular Machines

Nanomachines: Pirouetting in the spotlight September 29th, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015


Sniffing out cancer with improved 'electronic nose' sensors October 2nd, 2015

Hopes of improved brain implants October 1st, 2015

New Nanomaterials Taking Research to Mexico, Possibly into Space September 29th, 2015

Cristal Therapeutics Starts Clinical Phase I Trial with Nanomedicine CriPec® Docetaxel in Patients with Solid Tumours September 29th, 2015


Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Production of High Temperature Ceramics with Modified Properties in Iran October 2nd, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015


Hopes of improved brain implants October 1st, 2015

A new single-molecule tool to observe enzymes at work September 28th, 2015

DNA-based nanodevices for molecular medicine: Self-assembled DNA nanostructures can be used in molecular-scale diagnostics and as smart drug-delivery vehicles. September 25th, 2015

Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel cells: New technique removes barrier to development of biofuel cells with efficient performance September 25th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic