Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon strategy shows promise for batteries

Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)
Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)

Abstract:
Rice researchers advance lithium-ion technique for electric cars, large-capacity storage

Silicon strategy shows promise for batteries

Houston, TX | Posted on October 13th, 2010

A team of Rice University and Lockheed Martin scientists has discovered a way to use simple silicon to radically increase the capacity of lithium-ion batteries.

Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering, revealed how she, colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow, are enhancing the inherent ability of silicon to absorb lithium ions.

Their work was introduced today at Rice's Buckyball Discovery Conference, part of a yearlong celebration of the 25th anniversary of the Nobel Prize-winning discovery of the buckminsterfullerene, or carbon 60, molecule. It could become a key component for electric car batteries and large-capacity energy storage, they said.

"The anode, or negative, side of today's batteries is made of graphite, which works. It's everywhere," Wong said. "But it's maxed out. You can't stuff any more lithium into graphite than we already have."

Silicon has the highest theoretical capacity of any material for storing lithium, but there's a serious drawback to its use. "It can sop up a lot of lithium, about 10 times more than carbon, which seems fantastic," Wong said. "But after a couple of cycles of swelling and shrinking, it's going to crack."

Other labs have tried to solve the problem with carpets of silicon nanowires that absorb lithium like a mop soaks up water, but the Rice team took a different tack.

With Mahduri Thakur, a post-doctoral researcher in Rice's Chemical and Biomolecular Engineering Department, and Mark Isaacson of Lockheed Martin, Biswal, Wong and Sinsabaugh found that putting micron-sized pores into the surface of a silicon wafer gives the material sufficient room to expand. While common lithium-ion batteries hold about 300 milliamp hours per gram of carbon-based anode material, they determined the treated silicon could theoretically store more than 10 times that amount.

Sinsabaugh described the breakthrough as one of the first fruits of the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). He said the project began three years ago when he met Biswal at Rice and compared notes. "She was working on porous silicon, and I knew silicon nanostructures were being looked at for battery anodes. We put two and two together," he said.

Nanopores are simpler to create than silicon nanowires, Biswal said. The pores, a micron wide and from 10 to 50 microns long, form when positive and negative charge is applied to the sides of a silicon wafer, which is then bathed in a hydrofluoric solvent. "The hydrogen and fluoride atoms separate," she said. "The fluorine attacks one side of the silicon, forming the pores. They form vertically because of the positive and negative bias."

The treated silicon, she said, "looks like Swiss cheese."

The straightforward process makes it highly adaptable for manufacturing, she said. "We don't require some of the difficult processing steps they do -- the high vacuums and having to wash the nanotubes. Bulk etching is much simpler to process.

"The other advantage is that we've seen fairly long lifetimes. Our current batteries have 200-250 cycles, much longer than nanowire batteries," said Biswal.

They said putting pores in silicon requires a real balancing act, as the more space is dedicated to the holes, the less material is available to store lithium. And if the silicon expands to the point where the pore walls touch, the material could degrade.

The researchers are confident that cheap, plentiful silicon combined with ease of manufacture could help push their idea into the mainstream.

"We are very excited about the potential of this work," Sinsabaugh said. "This material has the potential to significantly increase the performance of lithium-ion batteries, which are used in a wide range of commercial, military and aerospace applications

Biswal and Wong plan to study the mechanism by which silicon absorbs lithium and how and why it breaks down. "Our goal is to develop a model of the strain that silicon undergoes in cycling lithium," Wong said. "Once we understand that, we'll have a much better idea of how to maximize its potential."

Lockheed Martin is a sponsor of Rice's Year of Nano.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Possible Futures

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Academic/Education

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Energy

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Automotive/Transportation

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic