Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silicon strategy shows promise for batteries

Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)
Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)

Abstract:
Rice researchers advance lithium-ion technique for electric cars, large-capacity storage

Silicon strategy shows promise for batteries

Houston, TX | Posted on October 13th, 2010

A team of Rice University and Lockheed Martin scientists has discovered a way to use simple silicon to radically increase the capacity of lithium-ion batteries.

Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering, revealed how she, colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow, are enhancing the inherent ability of silicon to absorb lithium ions.

Their work was introduced today at Rice's Buckyball Discovery Conference, part of a yearlong celebration of the 25th anniversary of the Nobel Prize-winning discovery of the buckminsterfullerene, or carbon 60, molecule. It could become a key component for electric car batteries and large-capacity energy storage, they said.

"The anode, or negative, side of today's batteries is made of graphite, which works. It's everywhere," Wong said. "But it's maxed out. You can't stuff any more lithium into graphite than we already have."

Silicon has the highest theoretical capacity of any material for storing lithium, but there's a serious drawback to its use. "It can sop up a lot of lithium, about 10 times more than carbon, which seems fantastic," Wong said. "But after a couple of cycles of swelling and shrinking, it's going to crack."

Other labs have tried to solve the problem with carpets of silicon nanowires that absorb lithium like a mop soaks up water, but the Rice team took a different tack.

With Mahduri Thakur, a post-doctoral researcher in Rice's Chemical and Biomolecular Engineering Department, and Mark Isaacson of Lockheed Martin, Biswal, Wong and Sinsabaugh found that putting micron-sized pores into the surface of a silicon wafer gives the material sufficient room to expand. While common lithium-ion batteries hold about 300 milliamp hours per gram of carbon-based anode material, they determined the treated silicon could theoretically store more than 10 times that amount.

Sinsabaugh described the breakthrough as one of the first fruits of the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). He said the project began three years ago when he met Biswal at Rice and compared notes. "She was working on porous silicon, and I knew silicon nanostructures were being looked at for battery anodes. We put two and two together," he said.

Nanopores are simpler to create than silicon nanowires, Biswal said. The pores, a micron wide and from 10 to 50 microns long, form when positive and negative charge is applied to the sides of a silicon wafer, which is then bathed in a hydrofluoric solvent. "The hydrogen and fluoride atoms separate," she said. "The fluorine attacks one side of the silicon, forming the pores. They form vertically because of the positive and negative bias."

The treated silicon, she said, "looks like Swiss cheese."

The straightforward process makes it highly adaptable for manufacturing, she said. "We don't require some of the difficult processing steps they do -- the high vacuums and having to wash the nanotubes. Bulk etching is much simpler to process.

"The other advantage is that we've seen fairly long lifetimes. Our current batteries have 200-250 cycles, much longer than nanowire batteries," said Biswal.

They said putting pores in silicon requires a real balancing act, as the more space is dedicated to the holes, the less material is available to store lithium. And if the silicon expands to the point where the pore walls touch, the material could degrade.

The researchers are confident that cheap, plentiful silicon combined with ease of manufacture could help push their idea into the mainstream.

"We are very excited about the potential of this work," Sinsabaugh said. "This material has the potential to significantly increase the performance of lithium-ion batteries, which are used in a wide range of commercial, military and aerospace applications

Biswal and Wong plan to study the mechanism by which silicon absorbs lithium and how and why it breaks down. "Our goal is to develop a model of the strain that silicon undergoes in cycling lithium," Wong said. "Once we understand that, we'll have a much better idea of how to maximize its potential."

Lockheed Martin is a sponsor of Rice's Year of Nano.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Possible Futures

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Automotive/Transportation

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

GLOBALFOUNDRIES Launches Embedded MRAM on 22FDX Platform: High-performance embedded non-volatile memory solution is ideally suited for emerging applications in advanced IoT and automotive September 15th, 2016

GLOBALFOUNDRIES Extends FDX Roadmap with 12nm FD-SOI Technology: 12FDXTM delivers full-node scaling, ultra-low power, and software-controlled performance on demand September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fish 'biowaste' converted to piezoelectric energy harvesters: Jadavpur University researchers in India devised a way to recycle fish byproducts into an energy harvester for self-powered electronics September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic