Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Silicon strategy shows promise for batteries

Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)
Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)

Abstract:
Rice researchers advance lithium-ion technique for electric cars, large-capacity storage

Silicon strategy shows promise for batteries

Houston, TX | Posted on October 13th, 2010

A team of Rice University and Lockheed Martin scientists has discovered a way to use simple silicon to radically increase the capacity of lithium-ion batteries.

Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering, revealed how she, colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow, are enhancing the inherent ability of silicon to absorb lithium ions.

Their work was introduced today at Rice's Buckyball Discovery Conference, part of a yearlong celebration of the 25th anniversary of the Nobel Prize-winning discovery of the buckminsterfullerene, or carbon 60, molecule. It could become a key component for electric car batteries and large-capacity energy storage, they said.

"The anode, or negative, side of today's batteries is made of graphite, which works. It's everywhere," Wong said. "But it's maxed out. You can't stuff any more lithium into graphite than we already have."

Silicon has the highest theoretical capacity of any material for storing lithium, but there's a serious drawback to its use. "It can sop up a lot of lithium, about 10 times more than carbon, which seems fantastic," Wong said. "But after a couple of cycles of swelling and shrinking, it's going to crack."

Other labs have tried to solve the problem with carpets of silicon nanowires that absorb lithium like a mop soaks up water, but the Rice team took a different tack.

With Mahduri Thakur, a post-doctoral researcher in Rice's Chemical and Biomolecular Engineering Department, and Mark Isaacson of Lockheed Martin, Biswal, Wong and Sinsabaugh found that putting micron-sized pores into the surface of a silicon wafer gives the material sufficient room to expand. While common lithium-ion batteries hold about 300 milliamp hours per gram of carbon-based anode material, they determined the treated silicon could theoretically store more than 10 times that amount.

Sinsabaugh described the breakthrough as one of the first fruits of the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). He said the project began three years ago when he met Biswal at Rice and compared notes. "She was working on porous silicon, and I knew silicon nanostructures were being looked at for battery anodes. We put two and two together," he said.

Nanopores are simpler to create than silicon nanowires, Biswal said. The pores, a micron wide and from 10 to 50 microns long, form when positive and negative charge is applied to the sides of a silicon wafer, which is then bathed in a hydrofluoric solvent. "The hydrogen and fluoride atoms separate," she said. "The fluorine attacks one side of the silicon, forming the pores. They form vertically because of the positive and negative bias."

The treated silicon, she said, "looks like Swiss cheese."

The straightforward process makes it highly adaptable for manufacturing, she said. "We don't require some of the difficult processing steps they do -- the high vacuums and having to wash the nanotubes. Bulk etching is much simpler to process.

"The other advantage is that we've seen fairly long lifetimes. Our current batteries have 200-250 cycles, much longer than nanowire batteries," said Biswal.

They said putting pores in silicon requires a real balancing act, as the more space is dedicated to the holes, the less material is available to store lithium. And if the silicon expands to the point where the pore walls touch, the material could degrade.

The researchers are confident that cheap, plentiful silicon combined with ease of manufacture could help push their idea into the mainstream.

"We are very excited about the potential of this work," Sinsabaugh said. "This material has the potential to significantly increase the performance of lithium-ion batteries, which are used in a wide range of commercial, military and aerospace applications

Biswal and Wong plan to study the mechanism by which silicon absorbs lithium and how and why it breaks down. "Our goal is to develop a model of the strain that silicon undergoes in cycling lithium," Wong said. "Once we understand that, we'll have a much better idea of how to maximize its potential."

Lockheed Martin is a sponsor of Rice's Year of Nano.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Announcements

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Energy

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

Automotive/Transportation

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

A protecting umbrella against oxygen: Toward fuel cells built from renewable and abundant components - Scientists from Bochum und Mülheim report in NATURE Chemistry August 4th, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Cylinder scanning system used in the ZylScan-System of the Breitmeier Messtechnik Company August 5th, 2014

Research partnerships

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE