Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti to Highlight Developments in Lithography, FDSOI and 3D Integration at SEMICON Europa, Oct. 19-21 in Dresden

Abstract:
CEA-Leti will highlight its programs and recent developments in lithography, FDSOI and 3D design and integration at SEMICON Europa, Oct. 19-21 in Dresden, Germany.

Leti experts will be in Hall 4 - Booth 026.

CEA-Leti to Highlight Developments in Lithography, FDSOI and 3D Integration at SEMICON Europa, Oct. 19-21 in Dresden

Grenoble | Posted on October 13th, 2010

Lithography

Working with IBM, ST, Nikon, TSMC and other technology pioneers, CEA-Leti's Lithography Laboratory is developing production-oriented patterning for several generations of future semiconductor technology.

Lithography processes based on optical technology will likely not be effective beyond the 22nm node, and the most-discussed alternative, extreme ultraviolet, is still not ready for production after more than 15 years of development. Today, a cloud of uncertainty hangs over the semiconductor industry's ability to continue its historic progress to ever-smaller features.

Leti's Lithography Laboratory is addressing this challenge in several areas. The Imagine Program is cultivating maskless electron-beam lithographic approaches originally developed in Leti's ML2 maskless lithography program. Meanwhile, ongoing research into optical double-patterning techniques was applied to a spacer process for advanced logic chip production.

These efforts have placed Leti at the forefront of e-beam lithography, with one of the most advanced equipment sets in the world, including two shaped e-beam systems, two Gaussian-beam systems, and the alpha version of Mapper Lithography's multi-beam tool, which has the potential to bring huge boosts in productivity. The Lithography Laboratory also maintains a complete 193nm lithography capability, including data preparation and resist characterization.

FDSOI

Leti is focusing on the development of fully depleted silicon-on-insulator (FDSOI) technology, which potentially will enable fabrication of smaller, denser and faster integrated circuits.

FDSOI devices typically require a much thinner active silicon layer than standard complimentary metal-oxide semiconductor (CMOS) devices, while also enabling significantly reduced threshold voltage variability and enhanced speed/power tradeoff. These and other performance advantages suggest that FDSOI CMOS devices have the potential to be scaled down to the 10nm-technology node by tuning the buried-oxide and silicon-layer thicknesses.

Since pioneering SOI technology in the early 1990s, Leti has produced the most advanced research in FDSOI, assessing its key advantages for low-power, high-performance applications with several industrial partners.

Last year, Leti focused on developing 22nm FDSOI devices and models, while working locally with STMicroelectronics and the Soitec Group, as well as with IBM's semiconductor Joint Development Alliance in Albany, N.Y. In addition, Leti and CMP (Circuits Multi Projects®) launched an exploratory multi-project-wafer initiative based on FDSOI 20nm process, opening access to Leti's 300mm infrastructure to the design community.

3D

Leti is offering wafer-to-wafer 3D integration support for customers' prototype development.

Leti researchers have been developing 3D design and integration technologies for more than two decades. Today, more than 60 researchers across several laboratories are working on various ways to make electrical connections between integrated circuit layers and between vertically stacked computer chips.

Potential uses for 3D integration span the electronics spectrum, from 3D networks-on-a-chip to memory-on-logic stacking to silicon-board technologies that could eventually replace printed-circuit-board packaging. 3D-IC technology plays a key role in enabling cost-effective performance for the entire microelectronics industry.

Leti is developing technologies that enable even higher-density vertical interconnects and recently integrated high-density, fine-pitch TSVs into a 65nm technology process, with very encouraging preliminary results.

Leti also started new 300mm TSV production processes in 300mm clean room facilities through a major partnership with SPP Process Technology Systems (SPTS). Leti will inaugurate its 3D integration 300mm on Jan. 18, 2011.

####

For more information, please click here

Contacts:
Amélie Ravier
account executive


Loomis Group
www.loomisgroup.com
phone +33 (0)1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Chip Technology

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Events/Classes

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project