Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Triple-mode transistors show potential

Top left: A graphene transistor with source and drain electrodes; top right, a schematic for the triple-mode single-transistor graphene amplifier; and bottom, a graph showing the three distinct modes of operation. (Images: Mohanram Lab/Rice University)
Top left: A graphene transistor with source and drain electrodes; top right, a schematic for the triple-mode single-transistor graphene amplifier; and bottom, a graph showing the three distinct modes of operation. (Images: Mohanram Lab/Rice University)

Abstract:
Rice researchers introduce graphene-based amplifiers

Triple-mode transistors show potential

Houston, TX | Posted on October 13th, 2010

Rice University research that capitalizes on the wide-ranging capabilities of graphene could lead to circuit applications that are far more compact and versatile than what is now feasible with silicon-based technologies.

Triple-mode, single-transistor amplifiers based on graphene -- the one-atom-thick form of carbon that recently won its discoverers a Nobel Prize -- could become key components in future electronic circuits. The discovery by Rice researchers was reported this week in the online journal ACS Nano.

Graphene is very strong, nearly transparent and conducts electricity very well. But another key property is ambipolarity, graphene's ability to switch between using positive and negative carriers on the fly depending on the input signal. Traditional silicon transistors usually use one or the other type of carrier, which is determined during fabrication.

A three-terminal single-transistor amplifier made of graphene can be changed during operation to any of three modes at any time using carriers that are positive, negative or both, providing opportunities that are not possible with traditional single-transistor architectures, said Kartik Mohanram, an assistant professor of electrical and computer engineering at Rice. He collaborated on the research with Alexander Balandin, a professor of electrical engineering at the University of California, Riverside, and their students Xuebei Yang (at Rice) and Guanxiong Liu (at Riverside).

Mohanram likened the new transistor's abilities to that of a water tap. "Turn it on and the water flows," he said. "Turn it off and the water stops. That's what a traditional transistor does. It's a unipolar device -- it only opens and closes in one direction."

"But if you close a tap too much, it opens again and water flows. That's what ambipolarity is -- current can flow when you open the transistor in either direction about a point of minimum conduction."

That alone means a graphene transistor can be "n-type" (negative) or "p-type" (positive), depending on whether the carrier originates from the source or drain terminals (which are effectively interchangeable). A third function appears when the input from each carrier is equal: The transistor becomes a frequency multiplier. By combining the three modes, the Rice-Riverside team demonstrated such common signaling schemes as phase and frequency shift keying for wireless and audio applications.

"Our work, and that of others, that focuses on the applications of ambipolarity complements efforts to make a better transistor with graphene," Mohanram said. "It promises more functionality." The research demonstrated that a single graphene transistor could potentially replace many in a typical integrated circuit, he said. Graphene's superior material properties and relative compatibility with silicon-based manufacturing should allow for integration of such circuits in the future, he added.

Technological roadblocks need to be overcome, Mohanram said. Such fabrication steps as dielectric deposition and making contacts "wind up disturbing the lattice, scratching it and introducing defects. That immediately degrades its performance (limiting signal gain), so we have to exercise a lot of care in fabrication.

"But the technology will mature, since so many research groups are working hard to address these challenges," he said.

The National Science Foundation and the DARPA-Semiconductor Research Corporation's Focus Center Research Program supported the work.

Read the abstract at pubs.acs.org/doi/abs/10.1021/nn1021583.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Possible Futures

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Chip Technology

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Nanotubes/Buckyballs/Fullerenes

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Nanoelectronics

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Announcements

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Research partnerships

University of Puerto Rico announces August 11th as the launch date for their NASA mission to look for life in space – XEI reports August 3rd, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project