Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Beyond the Nobel Prize, what’s next for graphene?

Abstract:
Researchers seek to understand similarities and differences in the plans, programs and approaches to commercialize graphene.

Beyond the Nobel Prize, what’s next for graphene?

Tempe, AZ | Posted on October 13th, 2010

If you had never heard of "graphene" before, you might know something about it now - if you follow the Nobel Prize announcements. Two physicists at the University of Manchester (UK) were awarded the Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene," carbon flakes that are only as thick as a single atom yet as strong as steel and as conductive as copper. But, what happens next for this revolutionary nanoscale material? Two social scientists began a study earlier in 2010 to understand the as yet undeveloped pathway to the commercialization of graphene - the processes, plans, promises and perils. Team leaders with the Center for Nanotechnology in Society at Arizona State University (CNS-ASU), Jan Youtie at Georgia Institute of Technology (Georgia Tech) and Philip Shapira at the University of Manchester and Georgia Tech are in the throes of their project on the Comparative Research and Innovation Approaches of Graphene Centers.

Graphene is anticipated to have potential applications in electronics to build semiconductors beyond the limits of silicon-based technology. It also offers promising applications for higher performance solar cells, LCD screens and photon sensors. Now that graphene has been identified and found to be stable in ultra-thin sheets, research efforts to understand it more thoroughly and to produce it in large quantities have ballooned. Yet, graphene is still at the development stage, and its commercialization pathway remains to be determined.

To kick-off their work on graphene innovation, Youtie and Shapira have been undertaking field work in two of the world's leading centers for graphene development: the University of Manchester and Georgia Tech. As acknowledged by the Nobel Committee for Physics when it awarded its 2010 Prize to Manchester physicists Andre Geim and Konstantin Novoselov, Manchester is the site of seminal work on graphene, including the first laboratory production of graphene sheets. Georgia Tech is the site of a National Science Foundation-funded Materials Science and Engineering Center (MRSEC) focused on research and development on epitaxial graphene. Youtie's and Shapira's project seeks to understand similarities and differences in the plans, programs and approaches to commercialize graphene-related applications in both locations. This includes examination of both the strategies for research and development and those for fostering commercialization in terms of external partnerships in the metropolitan regions of Manchester and Atlanta, elsewhere in the country, and internationally. In addition to field work, Youtie and Shapira also are undertaking analyses of publications, patents, funding, and corporate activities in graphene.

Over the coming year, Youtie and Shapira plan to expand their research focus to other locations in the United States and around the world where graphene research and commercialization clusters are emerging. Although graphene's full impacts may take many years to materialize, the results of Youtie's and Shapira's research will provide real-time insights to researchers, companies, policymakers and other stakeholders keen to understand how research in specific nanotechnology domains moves into early applications, what barriers and concerns are raised, and how these are being addressed.

Youtie's and Shapira's pilot project has received travel funding from a UK-US Collaboration Development Award (CDA) of the British Embassy and British Consulates in the United States, with supplementary support through CNS-ASU and the Manchester Institute for Innovation Research.

####

About CNS-ASU
In 2005, the U.S. National Science Foundation (NSF) announced a set of major grants in nanotechnology in society, including the creation of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) to pursue scholarship on and methodological and theoretical approaches to the social studies of nanotechnology. In 2010, NSF renewed its grant to fund CNS-ASU for another five years. CNS-ASU is the largest center for research, education and outreach on the societal aspects of nanotechnology in the world.

The guiding goals of CNS-ASU are two-fold: to increase the capacity for social learning that informs about the available choices in decision making about nanotechnology and to increase the ability of society and institutions to seek and understand a variety of inputs to manage emerging technologies while such management is still possible. Through this improved contextual awareness, CNS-ASU can help guide the path of nanotechnology knowledge and innovation toward more socially desirable outcomes and away from undesirable ones.

CNS-ASU pursues these goals through two cross-cutting research programs: real-time technology assessment (RTTA), including such activity as analyzing research and innovation systems, surveying public opinion and values, creating opportunities for public deliberation and participation regarding nanotechnology decision-making, and evaluating the impact of CNS-ASU activities; and two thematic research clusters (TRC) that investigate equity and responsibility, and human identity, enhancement and biology.

For more information, please click here

Contacts:
Cathy Arnold
Arizona State University
(602) 965-0555

Copyright © CNS-ASU

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Possible Futures

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Academic/Education

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Safety-Nanoparticles/Risk management

NIOSH Releases New Nanotechnology Workplace Design Recommendations March 13th, 2018

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project