Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Beyond the Nobel Prize, what’s next for graphene?

Abstract:
Researchers seek to understand similarities and differences in the plans, programs and approaches to commercialize graphene.

Beyond the Nobel Prize, what’s next for graphene?

Tempe, AZ | Posted on October 13th, 2010

If you had never heard of "graphene" before, you might know something about it now - if you follow the Nobel Prize announcements. Two physicists at the University of Manchester (UK) were awarded the Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene," carbon flakes that are only as thick as a single atom yet as strong as steel and as conductive as copper. But, what happens next for this revolutionary nanoscale material? Two social scientists began a study earlier in 2010 to understand the as yet undeveloped pathway to the commercialization of graphene - the processes, plans, promises and perils. Team leaders with the Center for Nanotechnology in Society at Arizona State University (CNS-ASU), Jan Youtie at Georgia Institute of Technology (Georgia Tech) and Philip Shapira at the University of Manchester and Georgia Tech are in the throes of their project on the Comparative Research and Innovation Approaches of Graphene Centers.

Graphene is anticipated to have potential applications in electronics to build semiconductors beyond the limits of silicon-based technology. It also offers promising applications for higher performance solar cells, LCD screens and photon sensors. Now that graphene has been identified and found to be stable in ultra-thin sheets, research efforts to understand it more thoroughly and to produce it in large quantities have ballooned. Yet, graphene is still at the development stage, and its commercialization pathway remains to be determined.

To kick-off their work on graphene innovation, Youtie and Shapira have been undertaking field work in two of the world's leading centers for graphene development: the University of Manchester and Georgia Tech. As acknowledged by the Nobel Committee for Physics when it awarded its 2010 Prize to Manchester physicists Andre Geim and Konstantin Novoselov, Manchester is the site of seminal work on graphene, including the first laboratory production of graphene sheets. Georgia Tech is the site of a National Science Foundation-funded Materials Science and Engineering Center (MRSEC) focused on research and development on epitaxial graphene. Youtie's and Shapira's project seeks to understand similarities and differences in the plans, programs and approaches to commercialize graphene-related applications in both locations. This includes examination of both the strategies for research and development and those for fostering commercialization in terms of external partnerships in the metropolitan regions of Manchester and Atlanta, elsewhere in the country, and internationally. In addition to field work, Youtie and Shapira also are undertaking analyses of publications, patents, funding, and corporate activities in graphene.

Over the coming year, Youtie and Shapira plan to expand their research focus to other locations in the United States and around the world where graphene research and commercialization clusters are emerging. Although graphene's full impacts may take many years to materialize, the results of Youtie's and Shapira's research will provide real-time insights to researchers, companies, policymakers and other stakeholders keen to understand how research in specific nanotechnology domains moves into early applications, what barriers and concerns are raised, and how these are being addressed.

Youtie's and Shapira's pilot project has received travel funding from a UK-US Collaboration Development Award (CDA) of the British Embassy and British Consulates in the United States, with supplementary support through CNS-ASU and the Manchester Institute for Innovation Research.

####

About CNS-ASU
In 2005, the U.S. National Science Foundation (NSF) announced a set of major grants in nanotechnology in society, including the creation of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) to pursue scholarship on and methodological and theoretical approaches to the social studies of nanotechnology. In 2010, NSF renewed its grant to fund CNS-ASU for another five years. CNS-ASU is the largest center for research, education and outreach on the societal aspects of nanotechnology in the world.

The guiding goals of CNS-ASU are two-fold: to increase the capacity for social learning that informs about the available choices in decision making about nanotechnology and to increase the ability of society and institutions to seek and understand a variety of inputs to manage emerging technologies while such management is still possible. Through this improved contextual awareness, CNS-ASU can help guide the path of nanotechnology knowledge and innovation toward more socially desirable outcomes and away from undesirable ones.

CNS-ASU pursues these goals through two cross-cutting research programs: real-time technology assessment (RTTA), including such activity as analyzing research and innovation systems, surveying public opinion and values, creating opportunities for public deliberation and participation regarding nanotechnology decision-making, and evaluating the impact of CNS-ASU activities; and two thematic research clusters (TRC) that investigate equity and responsibility, and human identity, enhancement and biology.

For more information, please click here

Contacts:
Cathy Arnold
Arizona State University
(602) 965-0555

Copyright © CNS-ASU

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Preparing for Nano

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Safety-Nanoparticles/Risk management

As You Sow’s Shareholder Inquiry on Nanomaterials Fought by Walgreens: Shareholder Proposal Addresses Recent Laboratory Tests Finding Harmful Nanomaterials in Walgreens’ Store Brand Infant Formula September 21st, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Nano-Toxicity Testing at Regulatory Sciences Summit: In Vitro Tests Can Most Efficiently Assess Nanomaterial Toxicity September 6th, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic