Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advanced imaging for bone research and materials science

Schematic of the new nano-CT method. The sample is scanned with an X-ray beam while the detector records a diffraction pattern for every beam position. The sample is then turned around its axis and scanned again, until a complete set of data is gathered for every angle. A high-resolution three-dimensional image of the sample is then computed from the hundreds of thousands of diffraction patterns by means of specially developed image reconstruction algorithms.
Schematic of the new nano-CT method. The sample is scanned with an X-ray beam while the detector records a diffraction pattern for every beam position. The sample is then turned around its axis and scanned again, until a complete set of data is gathered for every angle. A high-resolution three-dimensional image of the sample is then computed from the hundreds of thousands of diffraction patterns by means of specially developed image reconstruction algorithms.

Abstract:
High-resolution method for computed nano-tomography developed

Advanced imaging for bone research and materials science

Germany | Posted on October 12th, 2010

A novel nano-tomography method developed by a team of researchers from the Technische Universität München (TUM), the Paul Scherrer Institute (PSI) and the ETH Zurich opens the door to computed tomography examinations of minute structures at nanometer resolutions. The new method makes possible, for example, three-dimensional internal imaging of fragile bone structures. The first nano-CT images generated with this procedure will be published in the renowned journal Nature on September 23, 2010. This new technique will facilitate advances in both life sciences and materials sciences.

Osteoporosis, a medical condition in which bones become brittle and fragile from a loss of density, is among the most common diseases in aging bones: In Germany around a quarter of the population aged over 50 is affected. Patients' bone material shrinks rapidly, leading to a significantly increased risk of fracture. In clinical research to date, osteoporosis is diagnosed almost exclusively by establishing an overall reduction in bone density. This approach, however, gives little information about the associated, and equally important, local structure and bone density changes. Franz Pfeiffer, TUM professor for Biomedical Physics and head of the research team, has resolved the dilemma: "With our newly developed nano-CT method it is now possible to visualize the bone structure and density changes at high resolutions and in 3D. This enables us to do research on structural changes related to osteoporosis on a nanoscale and thus develop better therapeutic approaches."

During development, Pfeiffer's team built on X-ray computed tomography (CT). The principle is well established - CT scanners are used every day in hospitals and medical practices for the diagnostic screening of the human body. In the process the human body is X-rayed while a detector records from different angles how much radiation is being absorbed. In principle it is nothing more than taking multiple X-ray pictures from various directions. A number of such pictures are then used to generate digital 3D images of the body's interior using image processing.

The newly developed method measures not only the overall beam intensity absorbed by the object under examination at each angle, but also those parts of the X-ray beam that are deflected in different directions - "diffracted" in the language of physics. Such a diffraction pattern is generated for every point in the sample. This supplies additional information about the exact nanostructure, as X-ray radiation is particularly sensitive to the tiniest of structural changes. "Because we have to take and process so many individual pictures with extreme precision, it was particularly important during the implementation of the method to use high-brilliance X-ray radiation and fast, low-noise pixel detectors - both available at the Swiss Light Source (SLS)," says Oliver Bunk, who was responsible for the requisite experimental setup at the PSI synchrotron facilities in Switzerland.

The diffraction patterns are then processed using an algorithm developed by the team. TUM researcher Martin Dierolf, lead author of the Nature article, explains: "We developed an image reconstruction algorithm that generates a high-resolution, three-dimensional image of the sample using over one hundred thousand diffraction patterns. This algorithm takes into account not only classical X-ray absorption, but also the significantly more sensitive phase shift of the X-rays." A showcase example of the new technique was the examination of a 25-micrometer, superfine bone specimen of a laboratory mouse - with surprisingly exact results. The so-called phase contrast CT pictures show even smallest variations in the specimen's bone density with extremely high precision: Cross-sections of cavities where bone cells reside and their roughly 100 nanometer-fine interconnection network are clearly visible.

"Although the new nano-CT procedure does not achieve the spatial resolution currently available in electron microscopy, it can - because of the high penetration of X-rays - generate three-dimensional tomography images of bone samples," comments Roger Wepf, director of the Electron Microscopy Center of the ETH Zurich (EMEZ). "Furthermore, the new nano-CT procedure stands out with its high precision bone density measurement capacity, which is particularly important in bone research." This method will open the door to more precise studies on the early phase of osteoporosis, in particular, and evaluation of the therapeutic outcomes of various treatments in clinical studies.

The new technique is also very interesting for non-medical applications: Further fields of application include the development of new materials in materials science or in the characterization of semiconductor components. Ultimately, the nano-CT procedure may also be transferred to novel, laser-based X-ray sources, such as the ones currently under development at the Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP) and at the recently approved large-scale research project "Centre for Advanced Laser Applications" (CALA) on the TUM-Campus Garching near Munich.

Original publication:

Martin Dierolf, Andreas Menzel, Pierre Thibault, Philipp Schneider, Cameron M. Kewish, Roger Wepf, Oliver Bunk, Franz Pfeiffer: "Ptychographic X-Ray Computed Tomography at the Nano-Scale". Nature, 467, 436-439, 23. September 2010 - DOI: 10.1038/nature09419

####

For more information, please click here

Contacts:
Prof. Franz Pfeiffer
Chair of Biomedical Physics Technische Universität München
James-Franck-Straße 1 85748 Garching, Germany
Tel.: +49 89 289 12551
Fax: +49 89 289 12548

Dr. Oliver Bunk
Laboratory for Macromolecules and Bioimaging
Paul Scherrer Institute
3232 Villigen PSI, Switzerland
Tel.: +41 56 310 3077

Dr. Roger Albert Wepf
EMEZ – Electron Microscopy ETH Zurich
ETH Zurich
Wolfgang-Pauli-Str. 16 8093 Zurich, Switzerland
Tel: +41 44 633 45 58

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanobiotechnology

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project