Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)
Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)

Abstract:
Georgia Institute of Technology researchers have pioneered the fabrication techniques expected to be used for manufacturing high-performance electronic devices from the material that has been recognized in this year's Nobel Prize in physics.

Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Atlanta, GA | Posted on October 11th, 2010

The 2010 physics prize was awarded for producing, isolating, identifying and characterizing graphene, a single atomic layer of carbon whose unique properties make the material attractive for electronic applications. Scientists at the University of Manchester were recognized for their work on graphene sheets peeled from blocks of graphite.

The work of the Georgia Tech group, headed by Professor Walt de Heer in the Georgia Tech School of Physics, was recognized by the Royal Swedish Academy of Sciences in its scientific background document on the physics prize. De Heer's group pioneered epitaxial techniques for growing large-scale graphene sheets by heating wafers of silicon carbide to drive off the silicon, leaving a thin layer of graphene.

The technique, which is now being used by research groups at companies such as IBM, has practical applications in large-scale production of electronic devices. On Oct. 3, the group published a paper in the journal Nature Nanotechnology describing a new technique used to produce an array of 10,000 graphene transistors.

"We believe that our technique, or one very much like it, will ultimately be used to manufacture future generations of graphene-based electronic devices," said de Heer. "Using techniques that are suitable for scaling up for mass production, we can grow graphene in the patterns that we need for electronic devices."

The Georgia Tech group holds a patent, filed in 2003, on fabricating electronic devices from these graphene layers.

Georgia Tech is home to a Materials Research Science and Engineering Center (MRSEC), funded by the National Science Foundation (NSF) and including collaborators from the University of California-Berkeley, University of California-Riverside and University of Michigan. The foundation focus of the center is research and development of epitaxial graphene.

"The unique properties of graphene portend considerable promise for future electronic and optical devices," said Dennis Hess, the center's director. "If graphene is to serve as a viable successor to silicon-based microelectronic devices and circuits, large scale production on a suitable substrate is required. Proof of concept of this approach has already been demonstrated by the fabrication of a 10,000 epitaxial graphene transistor array by Walt de Heer and his collaborators. This achievement is a significant advance toward realizing carbon-based electronics for the 21st century."

The Georgia Tech team also collaborates with researchers at the National Institute of Standards and Technology (NIST) on characterizing the unique properties of graphene. That work has led to several recent important papers, in journals such as Science and Nature Physics. The latter described for the first time how the orbits of electrons are distributed spatially by magnetic fields applied to layers of epitaxial graphene.

On Oct. 3 in the advance online publication of the journal Nature Nanotechnology, de Heer and collaborators described the development of a new "templated growth" technique for fabricating nanometer-scale graphene devices. The method addresses what had been a significant obstacle to the use of this promising material in future generations of high-performance electronic devices.

The technique involves etching patterns into the silicon carbide surfaces on which epitaxial graphene is grown. The patterns serve as templates directing the growth of graphene structures, allowing the formation of nanoribbons of specific widths without the use of e-beams or other destructive cutting techniques. Templated nanoribbon growth addresses the edge roughness that causes electron scattering.

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Chip Technology

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Announcements

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Patents/IP/Tech Transfer/Licensing

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic