Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)
Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)

Abstract:
Georgia Institute of Technology researchers have pioneered the fabrication techniques expected to be used for manufacturing high-performance electronic devices from the material that has been recognized in this year's Nobel Prize in physics.

Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Atlanta, GA | Posted on October 11th, 2010

The 2010 physics prize was awarded for producing, isolating, identifying and characterizing graphene, a single atomic layer of carbon whose unique properties make the material attractive for electronic applications. Scientists at the University of Manchester were recognized for their work on graphene sheets peeled from blocks of graphite.

The work of the Georgia Tech group, headed by Professor Walt de Heer in the Georgia Tech School of Physics, was recognized by the Royal Swedish Academy of Sciences in its scientific background document on the physics prize. De Heer's group pioneered epitaxial techniques for growing large-scale graphene sheets by heating wafers of silicon carbide to drive off the silicon, leaving a thin layer of graphene.

The technique, which is now being used by research groups at companies such as IBM, has practical applications in large-scale production of electronic devices. On Oct. 3, the group published a paper in the journal Nature Nanotechnology describing a new technique used to produce an array of 10,000 graphene transistors.

"We believe that our technique, or one very much like it, will ultimately be used to manufacture future generations of graphene-based electronic devices," said de Heer. "Using techniques that are suitable for scaling up for mass production, we can grow graphene in the patterns that we need for electronic devices."

The Georgia Tech group holds a patent, filed in 2003, on fabricating electronic devices from these graphene layers.

Georgia Tech is home to a Materials Research Science and Engineering Center (MRSEC), funded by the National Science Foundation (NSF) and including collaborators from the University of California-Berkeley, University of California-Riverside and University of Michigan. The foundation focus of the center is research and development of epitaxial graphene.

"The unique properties of graphene portend considerable promise for future electronic and optical devices," said Dennis Hess, the center's director. "If graphene is to serve as a viable successor to silicon-based microelectronic devices and circuits, large scale production on a suitable substrate is required. Proof of concept of this approach has already been demonstrated by the fabrication of a 10,000 epitaxial graphene transistor array by Walt de Heer and his collaborators. This achievement is a significant advance toward realizing carbon-based electronics for the 21st century."

The Georgia Tech team also collaborates with researchers at the National Institute of Standards and Technology (NIST) on characterizing the unique properties of graphene. That work has led to several recent important papers, in journals such as Science and Nature Physics. The latter described for the first time how the orbits of electrons are distributed spatially by magnetic fields applied to layers of epitaxial graphene.

On Oct. 3 in the advance online publication of the journal Nature Nanotechnology, de Heer and collaborators described the development of a new "templated growth" technique for fabricating nanometer-scale graphene devices. The method addresses what had been a significant obstacle to the use of this promising material in future generations of high-performance electronic devices.

The technique involves etching patterns into the silicon carbide surfaces on which epitaxial graphene is grown. The patterns serve as templates directing the growth of graphene structures, allowing the formation of nanoribbons of specific widths without the use of e-beams or other destructive cutting techniques. Templated nanoribbon growth addresses the edge roughness that causes electron scattering.

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Possible Futures

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Chip Technology

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nanoelectronics

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Research partnerships

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Next-gen steel under the microscope March 18th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project