Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)
Walt de Heer in laboratory - A team headed by Georgia Tech professor Walt de Heer has pioneered fabrication techniques for producing electronic devices from graphene. (Credit: Mali Azima)

Abstract:
Georgia Institute of Technology researchers have pioneered the fabrication techniques expected to be used for manufacturing high-performance electronic devices from the material that has been recognized in this year's Nobel Prize in physics.

Researchers Develop Techniques for Using Material Recognized in Nobel Prize

Atlanta, GA | Posted on October 11th, 2010

The 2010 physics prize was awarded for producing, isolating, identifying and characterizing graphene, a single atomic layer of carbon whose unique properties make the material attractive for electronic applications. Scientists at the University of Manchester were recognized for their work on graphene sheets peeled from blocks of graphite.

The work of the Georgia Tech group, headed by Professor Walt de Heer in the Georgia Tech School of Physics, was recognized by the Royal Swedish Academy of Sciences in its scientific background document on the physics prize. De Heer's group pioneered epitaxial techniques for growing large-scale graphene sheets by heating wafers of silicon carbide to drive off the silicon, leaving a thin layer of graphene.

The technique, which is now being used by research groups at companies such as IBM, has practical applications in large-scale production of electronic devices. On Oct. 3, the group published a paper in the journal Nature Nanotechnology describing a new technique used to produce an array of 10,000 graphene transistors.

"We believe that our technique, or one very much like it, will ultimately be used to manufacture future generations of graphene-based electronic devices," said de Heer. "Using techniques that are suitable for scaling up for mass production, we can grow graphene in the patterns that we need for electronic devices."

The Georgia Tech group holds a patent, filed in 2003, on fabricating electronic devices from these graphene layers.

Georgia Tech is home to a Materials Research Science and Engineering Center (MRSEC), funded by the National Science Foundation (NSF) and including collaborators from the University of California-Berkeley, University of California-Riverside and University of Michigan. The foundation focus of the center is research and development of epitaxial graphene.

"The unique properties of graphene portend considerable promise for future electronic and optical devices," said Dennis Hess, the center's director. "If graphene is to serve as a viable successor to silicon-based microelectronic devices and circuits, large scale production on a suitable substrate is required. Proof of concept of this approach has already been demonstrated by the fabrication of a 10,000 epitaxial graphene transistor array by Walt de Heer and his collaborators. This achievement is a significant advance toward realizing carbon-based electronics for the 21st century."

The Georgia Tech team also collaborates with researchers at the National Institute of Standards and Technology (NIST) on characterizing the unique properties of graphene. That work has led to several recent important papers, in journals such as Science and Nature Physics. The latter described for the first time how the orbits of electrons are distributed spatially by magnetic fields applied to layers of epitaxial graphene.

On Oct. 3 in the advance online publication of the journal Nature Nanotechnology, de Heer and collaborators described the development of a new "templated growth" technique for fabricating nanometer-scale graphene devices. The method addresses what had been a significant obstacle to the use of this promising material in future generations of high-performance electronic devices.

The technique involves etching patterns into the silicon carbide surfaces on which epitaxial graphene is grown. The patterns serve as templates directing the growth of graphene structures, allowing the formation of nanoribbons of specific widths without the use of e-beams or other destructive cutting techniques. Templated nanoribbon growth addresses the edge roughness that causes electron scattering.

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Chip Technology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Patents/IP/Tech Transfer/Licensing

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

Research partnerships

New research could lead to more efficient electrical energy storage March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE