Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Embedded Rods

A new family of chitin–silica nanocomposites has been synthesized by using a versatile colloid-based combination of self-assembly and sol–gel chemistry. Various textures and morphologies can be obtained by adjusting the evaporation-based processes or by applying external fields. After calcination, textures and birefringence are preserved in the resulting mesoporous silicas.
A new family of chitin–silica nanocomposites has been synthesized by using a versatile colloid-based combination of self-assembly and sol–gel chemistry. Various textures and morphologies can be obtained by adjusting the evaporation-based processes or by applying external fields. After calcination, textures and birefringence are preserved in the resulting mesoporous silicas.

Abstract:
Chitin-silicon dioxide nanocomposite made by self-organization and sol-gel chemistry

Embedded Rods

Weinheim, Germany | Posted on October 11th, 2010

Self-organization processes involving chemical building blocks are the basis for many biological processes and are increasingly of interest in the field of materials synthesis, for example in the production of highly ordered nanocomposites or high-porosity materials with special properties. In the journal Angewandte Chemie, Bruno Alonso and Emmanuel Belamie from the Charles Gerhardt Institute in Montpellier (France) have introduced a novel, highly versatile approach to the large-scale synthesis of a new family of bioorganic-inorganic nanocomposites—with a previously unattainable degree of control over the composition and structure of the materials produced.

Nanocomposites are solid materials made of different substances, one of which is in the form of nanoparticles. The properties of the composites differ significantly from those of the pure individual components. Nanocomposites can also serve as "molds" for the production of porous substances. These have potential application in the areas of gas storage, catalysis, or materials separation.

For their synthesis, the researchers chose to use a sol-gel process, a popular technique for the production of inorganic network structures. In the first step they needed to generate a sol: a suspension of finely divided nanoscopic particles in a solvent. Their challenge was to obtain co-suspension of the two different components, silicon dioxide precursors (siloxane oligomers) and chitin nanorods from shrimp shells (a renewable resource). However, these two components require different conditions to remain in stable suspensions without uncontrolled precipitation. The researchers produced an alcohol suspension by slowly replacing water with ethanol. Through slow removal of the solvent, a gel formed. Gels are gelatinous substances; they contain solid but loose, cross-linked, three-dimensional polymer structures.

The sol can be "poured" into a desired mold and dried or it can be spray-dried into spherical particles. This process results in a nanocomposite made of chitin rods that are fully embedded in a silicon dioxide matrix. The mechanism by which this occurs is based on a self-organized aggregation of the chitin molecules and weak attractive forces between chitin and siloxane oligomers.

The stability of the alcohol suspensions opens up a wide range of possibilities for the production of materials with controllable volume ratios, spatial arrangements, and morphologies. If a magnetic field is applied during preparation of the material, the chitin rods line up in parallel. If the nanocomposite is heated, the chitin rods can be burned off to leave behind cavities. This forms a highly porous material with interesting properties.

Author: Emmanuel Belamie, Institut Charles Gerhardt, Montpellier (France),

Title: Chitin-Silica Nanocomposites by Self-Assembly

Angewandte Chemie International Edition,
Permalink to the article: dx.doi.org/10.1002/anie.201002104

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Possible Futures

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project