Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Studentís Discovery Advances Nanotech Research

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.
Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.

Abstract:
Enhanced, Ultra-Thin Sheets of Carbon Hold Promise in Sensor Applications

Studentís Discovery Advances Nanotech Research

Richardson, TX | Posted on October 7th, 2010

A UT Dallas graduate student's surprising research results could ultimately lead to high-performance nanoelectronics applications such as electron emitters, thermal-infrared night-vision sensors and solar absorbers for harvesting sunlight.

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties, making it a candidate to eventually replace silicon in applications like ultrafast transistors.

Making real-world devices from graphene, however, depends upon controlling the edges of graphene sheets, which often dictate the material's electronic properties. Simply adding oxygen atoms at the edges may turn graphene into an insulator.

Performing her experimental work on graphene oxide (GO) in Dr. Yves Chabal's Laboratory for Surface and Nanostructure Modification, Acik discovered a new infrared absorption mechanism when GO is annealed to about 850įC to remove most oxygen. The result was a very special arrangement of oxygen atoms at the edges. This stable configuration fosters the electronic conduction or emission necessary for device operation and for electron emitters.

Moreover, "this new phenomenon opens the door to tailoring giant infrared absorption at different spectral positions by modifying the nature of the edge termination," she and her co-investigators concluded. And that opens the door to employing graphene in a number of nanoelectronic applications in which infrared absorption is important, such as night-vision sensors and sunlight-harvesting solar absorbers.

"This work is a good example where the contribution from theory has been critical, as provided by Dr. G. Lee, a postdoctoral fellow working under the supervision of Dr. Kyeongjae ĎKJ' Cho," said Chabal, head of materials science and engineering and holder of the Texas Instruments Distinguished University Chair in Nanoelectronics. "The theory provided a detailed understanding of this new phenomenon that would have remained puzzling on its own."

Cho added that "this experimental finding is consistent with an earlier theoretical prediction of the metallic state of graphene edge oxide published in Physical Review in 2009."

The team's results recently appeared in the journal Nature Materials in an article titled "Unusual Infrared Absorption Mechanism in Thermally Reduced Graphene Oxide."

This absorption is a new phenomenon that's unique to graphene, according to Chabal in an article that appeared in nanotechweb.org, noting that the potential applications are very exciting.

"The effect cannot be explained by simple infrared absorption mechanisms and can only happen if free, mobile electrons are induced in reduced graphene oxide - something that has never been observed before," the article concluded.

The research was funded by the Semiconductor Research Corp.'s Nanotechnology Research Initiative and by Texas Instruments. The work was done in collaboration with Cecilia Mattevi and Manish Chhowalla at Rutgers University. A synopsis of the Nature Materials article is featured under Nano Focus here.

####

For more information, please click here

Contacts:
Media Contact: David Moore, UT Dallas, (972) 883-4183,

Office of Media Relations, UT Dallas, (972) 883-2155,

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Possible Futures

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Nanoelectronics

Physicists build 'electronic synapses' for neural networks April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Nature Photonics: Light source for quicker computer chips: Waveguide with integrated carbon nanotubes for conversion of electric signals into light / quicker computer chips are feasible / publication in Nature Photonics April 21st, 2016

Discoveries

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Announcements

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic