Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Studentís Discovery Advances Nanotech Research

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.
Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.

Abstract:
Enhanced, Ultra-Thin Sheets of Carbon Hold Promise in Sensor Applications

Studentís Discovery Advances Nanotech Research

Richardson, TX | Posted on October 7th, 2010

A UT Dallas graduate student's surprising research results could ultimately lead to high-performance nanoelectronics applications such as electron emitters, thermal-infrared night-vision sensors and solar absorbers for harvesting sunlight.

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties, making it a candidate to eventually replace silicon in applications like ultrafast transistors.

Making real-world devices from graphene, however, depends upon controlling the edges of graphene sheets, which often dictate the material's electronic properties. Simply adding oxygen atoms at the edges may turn graphene into an insulator.

Performing her experimental work on graphene oxide (GO) in Dr. Yves Chabal's Laboratory for Surface and Nanostructure Modification, Acik discovered a new infrared absorption mechanism when GO is annealed to about 850įC to remove most oxygen. The result was a very special arrangement of oxygen atoms at the edges. This stable configuration fosters the electronic conduction or emission necessary for device operation and for electron emitters.

Moreover, "this new phenomenon opens the door to tailoring giant infrared absorption at different spectral positions by modifying the nature of the edge termination," she and her co-investigators concluded. And that opens the door to employing graphene in a number of nanoelectronic applications in which infrared absorption is important, such as night-vision sensors and sunlight-harvesting solar absorbers.

"This work is a good example where the contribution from theory has been critical, as provided by Dr. G. Lee, a postdoctoral fellow working under the supervision of Dr. Kyeongjae ĎKJ' Cho," said Chabal, head of materials science and engineering and holder of the Texas Instruments Distinguished University Chair in Nanoelectronics. "The theory provided a detailed understanding of this new phenomenon that would have remained puzzling on its own."

Cho added that "this experimental finding is consistent with an earlier theoretical prediction of the metallic state of graphene edge oxide published in Physical Review in 2009."

The team's results recently appeared in the journal Nature Materials in an article titled "Unusual Infrared Absorption Mechanism in Thermally Reduced Graphene Oxide."

This absorption is a new phenomenon that's unique to graphene, according to Chabal in an article that appeared in nanotechweb.org, noting that the potential applications are very exciting.

"The effect cannot be explained by simple infrared absorption mechanisms and can only happen if free, mobile electrons are induced in reduced graphene oxide - something that has never been observed before," the article concluded.

The research was funded by the Semiconductor Research Corp.'s Nanotechnology Research Initiative and by Texas Instruments. The work was done in collaboration with Cecilia Mattevi and Manish Chhowalla at Rutgers University. A synopsis of the Nature Materials article is featured under Nano Focus here.

####

For more information, please click here

Contacts:
Media Contact: David Moore, UT Dallas, (972) 883-4183,

Office of Media Relations, UT Dallas, (972) 883-2155,

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project