Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Student’s Discovery Advances Nanotech Research

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.
Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties.

Abstract:
Enhanced, Ultra-Thin Sheets of Carbon Hold Promise in Sensor Applications

Student’s Discovery Advances Nanotech Research

Richardson, TX | Posted on October 7th, 2010

A UT Dallas graduate student's surprising research results could ultimately lead to high-performance nanoelectronics applications such as electron emitters, thermal-infrared night-vision sensors and solar absorbers for harvesting sunlight.

Materials science graduate student Muge Acik has been working with graphene, a single sheet of carbon that exhibits unique electronic and mechanical properties, making it a candidate to eventually replace silicon in applications like ultrafast transistors.

Making real-world devices from graphene, however, depends upon controlling the edges of graphene sheets, which often dictate the material's electronic properties. Simply adding oxygen atoms at the edges may turn graphene into an insulator.

Performing her experimental work on graphene oxide (GO) in Dr. Yves Chabal's Laboratory for Surface and Nanostructure Modification, Acik discovered a new infrared absorption mechanism when GO is annealed to about 850°C to remove most oxygen. The result was a very special arrangement of oxygen atoms at the edges. This stable configuration fosters the electronic conduction or emission necessary for device operation and for electron emitters.

Moreover, "this new phenomenon opens the door to tailoring giant infrared absorption at different spectral positions by modifying the nature of the edge termination," she and her co-investigators concluded. And that opens the door to employing graphene in a number of nanoelectronic applications in which infrared absorption is important, such as night-vision sensors and sunlight-harvesting solar absorbers.

"This work is a good example where the contribution from theory has been critical, as provided by Dr. G. Lee, a postdoctoral fellow working under the supervision of Dr. Kyeongjae ‘KJ' Cho," said Chabal, head of materials science and engineering and holder of the Texas Instruments Distinguished University Chair in Nanoelectronics. "The theory provided a detailed understanding of this new phenomenon that would have remained puzzling on its own."

Cho added that "this experimental finding is consistent with an earlier theoretical prediction of the metallic state of graphene edge oxide published in Physical Review in 2009."

The team's results recently appeared in the journal Nature Materials in an article titled "Unusual Infrared Absorption Mechanism in Thermally Reduced Graphene Oxide."

This absorption is a new phenomenon that's unique to graphene, according to Chabal in an article that appeared in nanotechweb.org, noting that the potential applications are very exciting.

"The effect cannot be explained by simple infrared absorption mechanisms and can only happen if free, mobile electrons are induced in reduced graphene oxide - something that has never been observed before," the article concluded.

The research was funded by the Semiconductor Research Corp.'s Nanotechnology Research Initiative and by Texas Instruments. The work was done in collaboration with Cecilia Mattevi and Manish Chhowalla at Rutgers University. A synopsis of the Nature Materials article is featured under Nano Focus here.

####

For more information, please click here

Contacts:
Media Contact: David Moore, UT Dallas, (972) 883-4183,

Office of Media Relations, UT Dallas, (972) 883-2155,

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic