Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New computer switches handle heat that renders transistors useless

Abstract:
Work takes a page from Victorian inventor

New computer switches handle heat that renders transistors useless

Cleveland, OH | Posted on October 7th, 2010

Researchers at Case Western Reserve University have taken the first step to building a computer capable of operating in the heat of a jet engine or the sunny side of the planet Mercury.

Te-Hao Lee, Swarup Bhunia and Mehran Mehregany, have made electromechanical switches - building blocks of circuits - that can take twice the heat that renders electronic transistors useless. Their work was published in Science last month.

The engineers took their cue from English inventor Charles Babbage, who built a steam-driven machine to calculate mathematical tables in the 1830s. The group applied nanotechnology to make switches fit today's ever-smaller computing platforms.

After configuring the switches into an inverter, they found the devices continue to work at more than 500 degrees Celsius - resilient enough to work inside engines of cars, jets and rockets, in deep underground drilling, even on the surface of Venus and Mercury.

"They work because they're mechanical and made of silicon carbide, which is robust at high temperatures," Bhunia said. "The switches operate in high heat and radiation, at lower voltage and higher density and perform better than transistors designed to operate in high heat."

While transistors have the advantage of no moving parts, they deteriorate at about 250 degree Celsius and leak electrons excited by the warmth, voiding the ability to accurately relay the current that moves data in computers.

To avoid those problems Lee, a PhD student, and Bhunia and Mehregany, professors of electrical engineering and computer science, decided to build switches of heat tolerant material and in a form in which, much like a light switch, mechanical levers make contact to pass current or break contact to halt current.

The group used electron beam lithography and sulfur hexafluoride gas to etch the switches, just a few hundred nanometers in size, out of silicon carbide.

The result is a switch that has no discernable leakage and no loss of power in testing at 500 degrees Celsius.

A pair of switches were used to make an inverter, which was able to switch on and off 500,000 times per second, performing computation each cycle. The switches, however, began to break down after 2 billion cycles and in a manner the researchers do not yet fully understand.

"We made a building block," Bhunia said. "Next, we're trying to make memory. If we can combine them, we can build a computer."

He and the others are confident that with improvements in production, they can build more durable switches that can cycle faster.

Whether they can reach the point of competing with faster transistors for office and home and even supercomputing, remains to be seen. The researchers point out that with the ability to handle much higher heat, the need for costly and space-consuming cooling systems would be eliminated.

Their effort is funded by U.S. Defense Advanced Research Projects Agency (DARPA).

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Possible Futures

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic