Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cheek Swab May Detect Lung Cancer

Nano-scale disturbances in cheek cells indicate the presence of lung cancer.
Nano-scale disturbances in cheek cells indicate the presence of lung cancer.

Abstract:
In clinical trial, technique appears to detect lung cancer far afield from a tumor

Cheek Swab May Detect Lung Cancer

Arlington, VA | Posted on October 7th, 2010

Early detection is critical for improving cancer survival rates. Yet, one of the deadliest cancers in the United States, lung cancer, is notoriously difficult to detect in its early stages.

Now, researchers have developed a method to detect lung cancer by merely shining diffuse light on cells swabbed from patients' cheeks.

In a new clinical study, the analysis technique--called partial wave spectroscopic (PWS) microscopy--was able to differentiate individuals with lung cancer from those without, even if the non-cancerous patients had been lifetime smokers or suffered from chronic obstructive pulmonary disease (COPD).

The findings-released by a team of engineers and physicians from NorthShore University Health System, Northwestern University and New York University-appear in print in the Oct. 15, 2010, issue of the journal Cancer Research.

"This study is important because it provides the proof of concept that a minimally intrusive, risk-stratification technique may allow us to tailor screening for lung cancer, the leading cause of cancer deaths in Americans," said physician and researcher Hemant Roy of NorthShore University HealthSystems and the University of Chicago, the lead author on the paper. "This represents a major step forward in translating biomedical optics breakthroughs for personalized screening for lung cancer."

The recent results are an extension of several successful trials involving the light-scattering analysis technique, including early detection successes with pancreatic cancer and colon cancer. NSF has supported the team's work since 2002, with an early grant to Roy's collaborator and co-author, bioengineer Vadim Backman of Northwestern University.

"Their work has now transitioned to a larger $2 million Emerging Frontiers in Research and Innovation award," said Leon Esterowitz, a biophotonics expert and program director at NSF who has long supported the research. "The results have even larger implications in that the techniques and the ‘field effect' may be a general phenomena that could be applied to a multitude of epithelial cancers, the most common cancer type."

The continuing clinical and laboratory experiments involving the PWS light-scattering technique-and its predecessor technologies, four-dimensional elastic light scattering fingerprinting (4D-ELF) and low-coherence enhanced backscattering spectroscopy (LEBS)-are revealing new information about the changes cells undergo when cancer emerges somewhere in the body.

Within affected cells, including otherwise healthy cells far from an actual tumor, the molecules in the nucleus and cellular skeleton appear to change. On the scale of roughly 200 nanometers or less, even to the scale of molecules, an affected cell's structure becomes so distorted that light scatters through the cell in a telling way.

The ability of cancer to cause changes in distant, healthy tissue is called the "field effect" or "field of injury" effect, and is the physical mechanism that allows cells in the cheek to reveal changes triggered by a tumor far off in a patient's lung.

"Microscopic histology and cytology have been a staple of clinical diagnostics detecting micro-scale alterations in cell structure," added Backman. "However, the resolution of conventional microscopy is limited. PWS-based nanocytology, on the other hand, detects cellular alterations at the nanoscale in otherwise microscopically normal-appearing cells."

"What is intriguing is that the very same nanoscale alterations seem to develop early in very different types of cancer including lung, colon and pancreatic cancers," Backman continued. "Not only does this suggest that nanocytology has the potential to become a general platform for cancer screening, but also that these nanoscale alterations are a ubiquitous event in early carcinogenesis with critical consequences for cell function. Elucidating the mechanisms of these alterations will help us understand the initial stages of carcinogenesis and improve screening."

This research was supported by the National Science Foundation through ten individual grants over the last decade, including CBET-0939778 and CBET-0937987.

####

About NSF
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot, NSF (703) 292-7730

Megan Fellman, Northwestern University (847) 491-3115

Jim Anthony, NorthShore University HealthSystem (847) 570-6132

Program Contacts
Sohi Rastegar, NSF (703) 292-8305
Leon Esterowitz, NSF (703) 292-7942


Principal Investigators
Vadim Backman, Northwestern University (847) 467-4010


Co-Investigators
Hemant Roy, NorthShore University HealthSystems and the University of Chicago

Copyright © NSF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE