Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers find way for superconductivity and magnetism to coexist

Schematic showing an array of tubes containing lithium atoms. The system is probed by imaging the shadow cast by this ensemble. Nature Supplementary Information
Schematic showing an array of tubes containing lithium atoms. The system is probed by imaging the shadow cast by this ensemble. Nature Supplementary Information

Abstract:
Dogs and cats, Harry Potter and Voldemort, superconductivity and magnetism -- they tend not to coexist. Superconductivity, the flow of electrons without resistance, is typically suppressed by magnetic fields, which disrupt the intricately choreographed electron motion.

By Anne Ju

Researchers find way for superconductivity and magnetism to coexist

Ithaca, NY | Posted on October 7th, 2010

Theoretical physicists at Cornell, working with experimental physicists at Rice University, have carefully engineered a system in which these conflicting properties are believed to put aside their differences.

Publishing online Sept. 30 in the journal Nature, the researchers made and tested an ultra-thin, ultra-cold analogue of a magnetic superconductor -- a sort of one-dimensional wire filled with lithium atoms.

The researchers placed the lithium atoms into bundles of narrow tubes, each of which was only one atom thick. In order to see superconducting properties, they cooled the tubes to about 10 nanokelvin (less than one-hundred-millionth of a degree above absolute zero).

Inside the tubes, the atoms could only bounce off each other in a straight line along the tube. This kinetic restriction stabilizes a "spin density wave" wherein the magnetism is periodically modulated along the tube, on an atomic scale. Superconductivity predominantly builds up in the regions where the magnetism is weakest.

The Cornell theory team, which included assistant professor Erich Mueller and graduate student Stefan Baur, analyzed the experimental data and produced microscopic models of the system. Their principal mathematical technique, the Bethe-Ansatz, was invented by Cornell physicist and Nobel laureate Hans Bethe in the 1930s. Mueller describes the technique as "one of Bethe's greatest legacies."

The work was supported by the Defense Advanced Research Projects Agency's Optical Lattice Emulator program, which seeks to understand and explore the quantum mechanical properties of materials through experiments on atomic clouds.

####

For more information, please click here

Contacts:
Media Contact:
Joe Schwartz
(607) 254-6235


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Possible Futures

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic