Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Printed Electronics - Bigger than the Silicon Chip

Abstract:
By Dr Peter Harrop, Chairman, IDTechEx

Printed Electronics - Bigger than the Silicon Chip

Cambridge, MA | Posted on October 6th, 2010

The silicon chip business went from nothing to approaching $200 billion market in size in twenty years. Now we have the beginning of a market that will outpace even that to reach $200 billion or so in only twenty years. It is printed electronics. Primarily this is flexible: that is the main benefit. It can be used like paper. Indeed it is sometimes printed onto paper and biodegradable.

Often better than the silicon chip

Printed electronics takes over where the silicon chip cannot cope. For example, it can provide simple electronic circuits at one tenth of the cost of those in a simple silicon chip but it can also be edible, stretchable, conformal (fitting over uneven surfaces), even transparent, though not all those things at one time. It can have a wide area when needed. Further, printed electronics includes electrics such as printed batteries, heaters, solar cells and switches. It has even appeared in the form of washable fabrics that sense and emit light and sounds. Increasingly electronics and electrics is printed with one circuit or device on top of the other, including moving colour displays and lighting. The silicon chip can never do any of that and that is why printed electronics has much greater commercial potential. Indeed, you can say that printed electronics also takes over where conventional displays and lighting are too thick, heavy, expensive and difficult to install.

Certain countries in the lead

So far, most of the manufacture of printed electronics has taken place in China, Japan, South Korea, Europe and the USA. Early successes included the battery tester on the side of Duracell batteries, waterproof membrane keyboards, antennas printed inside the plastic bodywork of cars, printed batteries and flexible photovoltaics (solar cells). In trials, printed electronics has even replaced the silicon chips in Radio Frequency Identification RFID tags at one tenth to one hundredth of the cost. Ten Chinese companies print light-emitting flexible displays for T-shirts, advertising on buildings and so on and the Chinese are keen to catch up and overtake other countries in making other forms of printed electronics and allied components. Research centres in Hong Kong and China are already making important breakthroughs such as the photovoltaic and vibration harvesting work at ASTRI in Hong Kong. Not all of this is printed or even partly printed but it is a vital addition to printed electronics. Previously impossible products then become possible.

Exciting future

Printed electronics has much further to go. The sports apparel company Adidas is developing fabrics that van create their own electricity to work printed electronics in them. Toppan Printing is developing flexible printed colour displays as good as the television in your home. CSIRO in Australia is working towards printing photovoltaics on almost anything. Printechnologics in Germany and VTT in Finland can print some types of electronics using regular high speed printers. Fuji Film Dimatix has special ink jet printers favoured for the other processes. Suncheon National University in South Korea and its spinoff company can print flexible low cost transistor circuits. Connectors, antennas, touch pads and soon have been printed with silver because copper has tended to oxidise and become useless when printed but IntrinsiQ of the United Kingdom and Hitachi Chemical in Japan can now print copper electronics even on paper -saving much cost.

Combining better performance with lower cost

Delightfully, improved performance is often achieved together with lower cost when this new electronics is used. For example, the printed diodes from the University of Manchester in the United Kingdom work at much higher frequencies than any of the old electronics can achieve and they are even to basis of an attempt to make much more efficient harvesting of light to make electricity. E-Ink, Liquavista of the Netherlands, Hong Kong University of Science and Technology, Kent Displays of the USA and Bridgestone of Japan are among the leaders in developing and making many types of display for the planned rollable, foldable e-readers and reprogrammable posters, apparel and healthcare devices. Indeed having nothing thrown away because future supermarket displays and so on are reprogrammable is even more environmental than having biodegradable electronics. The virtuosity of proponents of printed electronics is now remarkable, from Thin Film Electronics in Sweden printing memory.

Advance RFID

Closely allied to printed electronics is the world of so called second and third generation RFID. These are called Real Time Location Systems RTLS and Wireless Sensor Networks WSN. In particular, most of the envisaged applications of WSN call for lower cost nodes that are maintenance free for twenty years. This calls for multiple energy harvesting tapping heat, light, vibration and so on to create the required electricity and following Dust Networks in its ability to make nodes that require much less electricity in the first place. EnOcean of Germany has wireless sensors and actuators with twenty year life that use no batteries at all thanks to energy harvesting.

Wireless sensors

The French electrical systems giant Schneider Electric has developed sensors that harvest heat to drive their electronics. JV Nexus in Hong Kong and Hong Kong University are developing innovative wireless sensing and building management and Peking University is developing relevant energy harvesting. Printed and thin film batteries from Infinite Power Solutions are useful in these new forms of electronics and new components are being invented such as metamaterials, nantennas and the organic resonant tunnelling diodes of the University of Hong Kong. Most use printing or at least thin film technology and they can be combined together.

Thought is being given to the systems and locations that will use the new electronics, such as the RFID work at LSCM R&D Centre in Hong Kong and the work on food safety and healthcare at the Chinese University of Hong Kong.

All the above organisations will be presenting at the annual Printed Electronics Asia conference. Printed Electronics Asia 2010, the fourth annual IDTechEx conference in Asia, will be held on 13-14 October in Hong Kong. This event builds on the extensive research IDTechEx has conducted in Asia over the last ten years. It puts you at the heart of the activity and gives you access to the major developers. Those supplying materials, equipment and components, and system integrators, can benefit from understanding how to penetrate this territory at a stage when things are beginning to ramp up.

The event, co-organized with the local government research organizations ASTRI and LSCM, is geared towards introducing you to the main companies working in this topic and through many presentations providing you with the latest progress. Speakers include end users such as Adidas discussing their needs. Attendees can access our proprietary online networking system and will also receive the IDTechEx report "Printed Electronics in Asia", covering profiles of 196 organizations in the territory. There are tours to local organizations, including one of the largest solar exhibitions in the region. The money spent on attending will be small compared to the investment needed for you to research progress in the territory, giving you exclusive insight and competitiveness.

####

For more information, please click here

Contacts:
For more information on the events, or to become a media partner, please contact:
Cara Van Heest

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Food/Agriculture/Supplements

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Graphene-infused packaging is a million times better at blocking moisture July 15th, 2016

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

RFID

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Designer electronics out of the printer: Optimized printing process enables custom organic electronics June 16th, 2015

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic