Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Printed Electronics - Bigger than the Silicon Chip

Abstract:
By Dr Peter Harrop, Chairman, IDTechEx

Printed Electronics - Bigger than the Silicon Chip

Cambridge, MA | Posted on October 6th, 2010

The silicon chip business went from nothing to approaching $200 billion market in size in twenty years. Now we have the beginning of a market that will outpace even that to reach $200 billion or so in only twenty years. It is printed electronics. Primarily this is flexible: that is the main benefit. It can be used like paper. Indeed it is sometimes printed onto paper and biodegradable.

Often better than the silicon chip

Printed electronics takes over where the silicon chip cannot cope. For example, it can provide simple electronic circuits at one tenth of the cost of those in a simple silicon chip but it can also be edible, stretchable, conformal (fitting over uneven surfaces), even transparent, though not all those things at one time. It can have a wide area when needed. Further, printed electronics includes electrics such as printed batteries, heaters, solar cells and switches. It has even appeared in the form of washable fabrics that sense and emit light and sounds. Increasingly electronics and electrics is printed with one circuit or device on top of the other, including moving colour displays and lighting. The silicon chip can never do any of that and that is why printed electronics has much greater commercial potential. Indeed, you can say that printed electronics also takes over where conventional displays and lighting are too thick, heavy, expensive and difficult to install.

Certain countries in the lead

So far, most of the manufacture of printed electronics has taken place in China, Japan, South Korea, Europe and the USA. Early successes included the battery tester on the side of Duracell batteries, waterproof membrane keyboards, antennas printed inside the plastic bodywork of cars, printed batteries and flexible photovoltaics (solar cells). In trials, printed electronics has even replaced the silicon chips in Radio Frequency Identification RFID tags at one tenth to one hundredth of the cost. Ten Chinese companies print light-emitting flexible displays for T-shirts, advertising on buildings and so on and the Chinese are keen to catch up and overtake other countries in making other forms of printed electronics and allied components. Research centres in Hong Kong and China are already making important breakthroughs such as the photovoltaic and vibration harvesting work at ASTRI in Hong Kong. Not all of this is printed or even partly printed but it is a vital addition to printed electronics. Previously impossible products then become possible.

Exciting future

Printed electronics has much further to go. The sports apparel company Adidas is developing fabrics that van create their own electricity to work printed electronics in them. Toppan Printing is developing flexible printed colour displays as good as the television in your home. CSIRO in Australia is working towards printing photovoltaics on almost anything. Printechnologics in Germany and VTT in Finland can print some types of electronics using regular high speed printers. Fuji Film Dimatix has special ink jet printers favoured for the other processes. Suncheon National University in South Korea and its spinoff company can print flexible low cost transistor circuits. Connectors, antennas, touch pads and soon have been printed with silver because copper has tended to oxidise and become useless when printed but IntrinsiQ of the United Kingdom and Hitachi Chemical in Japan can now print copper electronics even on paper -saving much cost.

Combining better performance with lower cost

Delightfully, improved performance is often achieved together with lower cost when this new electronics is used. For example, the printed diodes from the University of Manchester in the United Kingdom work at much higher frequencies than any of the old electronics can achieve and they are even to basis of an attempt to make much more efficient harvesting of light to make electricity. E-Ink, Liquavista of the Netherlands, Hong Kong University of Science and Technology, Kent Displays of the USA and Bridgestone of Japan are among the leaders in developing and making many types of display for the planned rollable, foldable e-readers and reprogrammable posters, apparel and healthcare devices. Indeed having nothing thrown away because future supermarket displays and so on are reprogrammable is even more environmental than having biodegradable electronics. The virtuosity of proponents of printed electronics is now remarkable, from Thin Film Electronics in Sweden printing memory.

Advance RFID

Closely allied to printed electronics is the world of so called second and third generation RFID. These are called Real Time Location Systems RTLS and Wireless Sensor Networks WSN. In particular, most of the envisaged applications of WSN call for lower cost nodes that are maintenance free for twenty years. This calls for multiple energy harvesting tapping heat, light, vibration and so on to create the required electricity and following Dust Networks in its ability to make nodes that require much less electricity in the first place. EnOcean of Germany has wireless sensors and actuators with twenty year life that use no batteries at all thanks to energy harvesting.

Wireless sensors

The French electrical systems giant Schneider Electric has developed sensors that harvest heat to drive their electronics. JV Nexus in Hong Kong and Hong Kong University are developing innovative wireless sensing and building management and Peking University is developing relevant energy harvesting. Printed and thin film batteries from Infinite Power Solutions are useful in these new forms of electronics and new components are being invented such as metamaterials, nantennas and the organic resonant tunnelling diodes of the University of Hong Kong. Most use printing or at least thin film technology and they can be combined together.

Thought is being given to the systems and locations that will use the new electronics, such as the RFID work at LSCM R&D Centre in Hong Kong and the work on food safety and healthcare at the Chinese University of Hong Kong.

All the above organisations will be presenting at the annual Printed Electronics Asia conference. Printed Electronics Asia 2010, the fourth annual IDTechEx conference in Asia, will be held on 13-14 October in Hong Kong. This event builds on the extensive research IDTechEx has conducted in Asia over the last ten years. It puts you at the heart of the activity and gives you access to the major developers. Those supplying materials, equipment and components, and system integrators, can benefit from understanding how to penetrate this territory at a stage when things are beginning to ramp up.

The event, co-organized with the local government research organizations ASTRI and LSCM, is geared towards introducing you to the main companies working in this topic and through many presentations providing you with the latest progress. Speakers include end users such as Adidas discussing their needs. Attendees can access our proprietary online networking system and will also receive the IDTechEx report "Printed Electronics in Asia", covering profiles of 196 organizations in the territory. There are tours to local organizations, including one of the largest solar exhibitions in the region. The money spent on attending will be small compared to the investment needed for you to research progress in the territory, giving you exclusive insight and competitiveness.

####

For more information, please click here

Contacts:
For more information on the events, or to become a media partner, please contact:
Cara Van Heest

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Display technology/LEDs/SS Lighting/OLEDs

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Food/Agriculture/Supplements

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

Antibacterial Nanocomposites Designed in Iran for Foodstuff Packaging January 20th, 2016

HSI 2016 | Hyperspectral Imaging and Applications conference is announced January 13th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

RFID

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Designer electronics out of the printer: Optimized printing process enables custom organic electronics June 16th, 2015

Printing/Lithography/Inkjet/Inks

Teijin to Participate in Nano Tech 2016 January 21st, 2016

New bimetallic alloy nanoparticles for printed electronic circuits: Production of oxidation-resistant copper alloy nanoparticles by electrical explosion of wire for printed electronics January 5th, 2016

Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Screen Printable Functionalised Graphene Ink November 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic