Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Conference highlights Biomarker Detection Role for NanoSight

The NanoSight NS500 system like the one being used in Oxford by the Sargent group
The NanoSight NS500 system like the one being used in Oxford by the Sargent group

Abstract:
Researchers from Oxford have recently presented exciting new data applying nanoparticle tracking analysis (NTA) to size and count both cellular microvesicles and exosomes at a low concentration and, when used in conjunction with fluorescent labels, to selectively determine and analyse specific types of vesicle within a complex sample. This took place during a two-day conference in Oxford, "Micro and Nanovesicles in Health and Disease", organised by Dr Paul Harrison from the Oxford Haemophilia & Thrombosis Centre at the Churchill Hospital in Oxford and Ian Sargent, Professor of Reproductive Science in the Nuffield Department of Obstetrics and Gynaecology, University of Oxford.(1)

Conference highlights Biomarker Detection Role for NanoSight

Salisbury, UK | Posted on October 6th, 2010

Most researchers concur that the high levels of microvesicles and/or exosomes are associated with (i.e. potential biomarkers for) thrombotic diseases, cardiovascular disease and some cancers. Leading the research at the Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Professor Ian Sargent says "many cells shed small vesicles in a regulated way which plays a key role in intercellular communication. In general, there are two types of vesicle: microvesicles (100nm - 1 µm in diameter) which directly bud from the plasma membrane and nanovesicles (exosomes 30nm - 100nm) which are released by exocytosis from multivesicular bodies of the endosome. Both are involved in cell signalling. They carry diverse membrane and cytosolic proteins as well as messenger and microRNAs. They can affect the physiology of their target cells in various ways, from inducing intracellular signalling following binding to receptors, to conferring new properties after the acquisition of new receptors, enzymes or genetic material by fusion or endocytosis. They participate in physiological processes including haemostasis and thrombosis, inflammation, immune interactions and angiogenesis.

Continuing, Sargent said: "NanoSight's NTA technique is a major step forward in analytical capability taking the limits of flow cytometry down almost an order of magnitude. It is rapid and, in common with flow cytometry, characterizes polydispersity well."

Also at this conference Edwin van der Pol from the Academic Medical Center at the University of Amsterdam presented a theoretical comparison of analytical techniques for microvesicles and exosomes. This confirmed the advantages of using NTA for studying vesicles sized from 50-400nm. The previously preferred technique was flow cytometry. However, van der Pol concluded this has a practical lower limit of 300nm. Similarly electrozone sensing is not able detect at such small sizes. He added that while Dynamic Light Scattering (DLS) is able to identify very small particles, it generally biases towards large particles in polydisperse samples so this mis-reporting renders it of little value. It is also not able to make concentration measurement.

Jeremy Warren, NanoSight CEO, commented "The work of this important group is a significant milestone for us. It is the first step toward directing NanoSight's capability as a platform for biomarker detection".

In the closing session, Dr Karl Morten, also from University of Oxford, described NanoSight's useful role in rapidly assessing newly developed nanoparticles, as he summarised a range of roles of nanotechnology in drug delivery.

This conference bought together 135 delegates in this rapidly growing area of interest. There were five groups from the UK, Netherlands and USA who have recently added NanoSight's NTA to their characterisation capability.

To learn more about nanoparticle characterization using Nanoparticle Tracking Analysis, NTA, please visit the company website (www.nanosight.com) and register for the latest issue of NanoTrail, the company's electronic newsletter.

Reference:

(1) Nanoparticle Tracking Analysis for the Measurement and Characterisation of Cellular Microvesicles and Nanovesicles, Proc NVTH BSTH 2010

####

About NanoSight Limited
NanoSight Limited, of Salisbury, UK, provides unique nanoparticle characterization technology. “Nanoparticle Tracking Analysis” (NTA) detects and visualizes populations of nanoparticles in liquids down to 10nm (material dependent) and measures the size of each particle from direct observations of diffusion. This particle-by-particle methodology goes beyond traditional light scattering techniques such as Dynamic Light Scattering (DLS), or Photon Correlation Spectroscopy (PCS), in providing high-resolution particle size distributions. Additionally NanoSight measures concentration and validates all data with video of particles moving under Brownian motion.

This characterization information is highly informative in understanding the more complex suspensions in biological systems, hence its wide application in development of drug delivery systems, viral vaccines, the study of toxicology of nanoparticles and their environmental fate and in biomarker detection. This real-time data also provides insight into the kinetics of protein aggregation and other time-dependent phenomena in a quantitative manner, at deeply sub-micron sizes.

NanoSight has more than 250 systems installed worldwide with users including BASF, BP, GlaxoSmithKline, Novartis, 3M Corp., Roche, Solvay and Unilever together with many universities and research institutes. There are currently 100+ third party papers citing NanoSight results, with this reference base growing very rapidly as NanoSight consolidates its key contribution to nanoparticle characterization. For more information, visit the NanoSight website (www.nanosight.com).

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT
T +44 (0) 1980 676060
F +44 (0) 1980 624703


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44 (0) 1799 521881
M +44 (0) 7843 012997

Copyright © NanoSight Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Tools

Relax, just break it July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project