Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Pak Kin Wong
Pak Kin Wong

Abstract:
Pak Kin Wong aims to discover the rules that govern how biological tissues are formed from individual cells. He is investigating how to grow new tissue to replace that destroyed by disease.

By Pete Brown, College of Engineering

UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Tucson, AZ | Posted on October 2nd, 2010

The director of the National Institutes of Health, Francis S. Collins, has announced that Pak Kin Wong, UA professor of aerospace and mechanical engineering and a BIO5 Institute member, has won a $1.5 million NIH Director's New Innovator Award.

Wong's research aims to discover the rules that govern how biological tissues are formed from individual cells. In particular, Wong is investigating how to grow new tissue to replace that destroyed by disease.

"The research holds great promise in treating degenerative diseases by stimulating damaged tissues to repair themselves, or replacing them with engineered tissues when the body cannot heal itself," Wong said.

Collins announced the award Sept. 30 at the start of the Sixth Annual NIH Director's Pioneer Award Symposium in Bethesda, Md. This is the first time the award has been made to a researcher in any Arizona university.

"NIH is pleased to be supporting early-stage investigators from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said Collins. "We look forward to the results of their work."

"It is a great honor to receive this prestigious award from NIH that supports exceptionally innovative biomedical research," Wong said. "With the support, we will be able to explore extremely challenging research problems that may produce important medical advances."

Wong is working with professor Carol Gregorio, director of the molecular cardiovascular research program in the UA College of Medicine. "We are studying biological processes related to muscular dystrophy and cardiomyopathy," Wong said. "We are also exploring neurodegeneration."

Much of the research conducted by College of Engineering faculty involves collaboration with other UA departments and with external research teams. College of Engineering Dean Jeff Goldberg described Wong as "an outstanding faculty member whose research spans mechanical engineering, medicine and biology."

"Dr. Wong strongly complements the college's goals of solving important problems by working on interdisciplinary teams in areas that are not traditionally engineering oriented," Goldberg said. "Our aim is to be a strong partner with both campus and external research teams, and with faculty members like Dr. Wong we can achieve that goal in our key research areas."

Wong's research project is seeking the answer to a crucial question in tissue regeneration: How do the cells of a tissue know how to organize into structures that are much bigger than themselves?

"This project will investigate the fundamental rules of cells that collectively drive complex tissue architectures," Wong said. His research will look at how individual cells know what they are supposed to do without a central coordinator or a blueprint. "We aim to study, understand, and control how nature builds complex tissue," he said.

Wong is director of the UA's Systematic Bioengineering Laboratory, which weaves bio, nano and information technologies together to advance what is known about design rules at a cellular level.

"While we have the technologies to study nature at the molecular level, conversely, nature provides an excellent model to develop even better nanotechnologies," Wong says on his lab's website. Wong's lab develops tools and approaches to understand complex biological systems.

He is also researching how to control and mimic what he calls the "fantastic designs" found in cells and tissues. He describes this field of study as "systematic bioengineering technologies" and says it has "great potential in revolutionizing medical science and the concept of nanotechnology we think of today."

####

For more information, please click here

Contacts:
Media Contact
Pete Brown
College of Engineering
520-621-3754

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

Nanobiotechnology

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project