Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Pak Kin Wong
Pak Kin Wong

Abstract:
Pak Kin Wong aims to discover the rules that govern how biological tissues are formed from individual cells. He is investigating how to grow new tissue to replace that destroyed by disease.

By Pete Brown, College of Engineering

UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Tucson, AZ | Posted on October 2nd, 2010

The director of the National Institutes of Health, Francis S. Collins, has announced that Pak Kin Wong, UA professor of aerospace and mechanical engineering and a BIO5 Institute member, has won a $1.5 million NIH Director's New Innovator Award.

Wong's research aims to discover the rules that govern how biological tissues are formed from individual cells. In particular, Wong is investigating how to grow new tissue to replace that destroyed by disease.

"The research holds great promise in treating degenerative diseases by stimulating damaged tissues to repair themselves, or replacing them with engineered tissues when the body cannot heal itself," Wong said.

Collins announced the award Sept. 30 at the start of the Sixth Annual NIH Director's Pioneer Award Symposium in Bethesda, Md. This is the first time the award has been made to a researcher in any Arizona university.

"NIH is pleased to be supporting early-stage investigators from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said Collins. "We look forward to the results of their work."

"It is a great honor to receive this prestigious award from NIH that supports exceptionally innovative biomedical research," Wong said. "With the support, we will be able to explore extremely challenging research problems that may produce important medical advances."

Wong is working with professor Carol Gregorio, director of the molecular cardiovascular research program in the UA College of Medicine. "We are studying biological processes related to muscular dystrophy and cardiomyopathy," Wong said. "We are also exploring neurodegeneration."

Much of the research conducted by College of Engineering faculty involves collaboration with other UA departments and with external research teams. College of Engineering Dean Jeff Goldberg described Wong as "an outstanding faculty member whose research spans mechanical engineering, medicine and biology."

"Dr. Wong strongly complements the college's goals of solving important problems by working on interdisciplinary teams in areas that are not traditionally engineering oriented," Goldberg said. "Our aim is to be a strong partner with both campus and external research teams, and with faculty members like Dr. Wong we can achieve that goal in our key research areas."

Wong's research project is seeking the answer to a crucial question in tissue regeneration: How do the cells of a tissue know how to organize into structures that are much bigger than themselves?

"This project will investigate the fundamental rules of cells that collectively drive complex tissue architectures," Wong said. His research will look at how individual cells know what they are supposed to do without a central coordinator or a blueprint. "We aim to study, understand, and control how nature builds complex tissue," he said.

Wong is director of the UA's Systematic Bioengineering Laboratory, which weaves bio, nano and information technologies together to advance what is known about design rules at a cellular level.

"While we have the technologies to study nature at the molecular level, conversely, nature provides an excellent model to develop even better nanotechnologies," Wong says on his lab's website. Wong's lab develops tools and approaches to understand complex biological systems.

He is also researching how to control and mimic what he calls the "fantastic designs" found in cells and tissues. He describes this field of study as "systematic bioengineering technologies" and says it has "great potential in revolutionizing medical science and the concept of nanotechnology we think of today."

####

For more information, please click here

Contacts:
Media Contact
Pete Brown
College of Engineering
520-621-3754

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanomedicine

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE