Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Pak Kin Wong
Pak Kin Wong

Abstract:
Pak Kin Wong aims to discover the rules that govern how biological tissues are formed from individual cells. He is investigating how to grow new tissue to replace that destroyed by disease.

By Pete Brown, College of Engineering

UA Bioengineer Awarded $1.5M to Research Tissue Regeneration

Tucson, AZ | Posted on October 2nd, 2010

The director of the National Institutes of Health, Francis S. Collins, has announced that Pak Kin Wong, UA professor of aerospace and mechanical engineering and a BIO5 Institute member, has won a $1.5 million NIH Director's New Innovator Award.

Wong's research aims to discover the rules that govern how biological tissues are formed from individual cells. In particular, Wong is investigating how to grow new tissue to replace that destroyed by disease.

"The research holds great promise in treating degenerative diseases by stimulating damaged tissues to repair themselves, or replacing them with engineered tissues when the body cannot heal itself," Wong said.

Collins announced the award Sept. 30 at the start of the Sixth Annual NIH Director's Pioneer Award Symposium in Bethesda, Md. This is the first time the award has been made to a researcher in any Arizona university.

"NIH is pleased to be supporting early-stage investigators from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said Collins. "We look forward to the results of their work."

"It is a great honor to receive this prestigious award from NIH that supports exceptionally innovative biomedical research," Wong said. "With the support, we will be able to explore extremely challenging research problems that may produce important medical advances."

Wong is working with professor Carol Gregorio, director of the molecular cardiovascular research program in the UA College of Medicine. "We are studying biological processes related to muscular dystrophy and cardiomyopathy," Wong said. "We are also exploring neurodegeneration."

Much of the research conducted by College of Engineering faculty involves collaboration with other UA departments and with external research teams. College of Engineering Dean Jeff Goldberg described Wong as "an outstanding faculty member whose research spans mechanical engineering, medicine and biology."

"Dr. Wong strongly complements the college's goals of solving important problems by working on interdisciplinary teams in areas that are not traditionally engineering oriented," Goldberg said. "Our aim is to be a strong partner with both campus and external research teams, and with faculty members like Dr. Wong we can achieve that goal in our key research areas."

Wong's research project is seeking the answer to a crucial question in tissue regeneration: How do the cells of a tissue know how to organize into structures that are much bigger than themselves?

"This project will investigate the fundamental rules of cells that collectively drive complex tissue architectures," Wong said. His research will look at how individual cells know what they are supposed to do without a central coordinator or a blueprint. "We aim to study, understand, and control how nature builds complex tissue," he said.

Wong is director of the UA's Systematic Bioengineering Laboratory, which weaves bio, nano and information technologies together to advance what is known about design rules at a cellular level.

"While we have the technologies to study nature at the molecular level, conversely, nature provides an excellent model to develop even better nanotechnologies," Wong says on his lab's website. Wong's lab develops tools and approaches to understand complex biological systems.

He is also researching how to control and mimic what he calls the "fantastic designs" found in cells and tissues. He describes this field of study as "systematic bioengineering technologies" and says it has "great potential in revolutionizing medical science and the concept of nanotechnology we think of today."

####

For more information, please click here

Contacts:
Media Contact
Pete Brown
College of Engineering
520-621-3754

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project