Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Leti Demonstrates the Integration of CMOS-Compatible Plasmonic Optical Waveguides with Silicon Photonic Devices

Abstract:
Copper Waveguides Offer Potential for Developing Smaller, More Efficient, High-Performance Photonic Components

Leti Demonstrates the Integration of CMOS-Compatible Plasmonic Optical Waveguides with Silicon Photonic Devices

Grenoble, France | Posted on October 1st, 2010

CEA-Leti, a leading European research and development institute in the field of silicon photonics technology, today announced that it has demonstrated the efficient integration of silicon photonic devices with fully complementary metal-oxide semiconductor (CMOS)-compatible plasmonic optical waveguides.

This new capability sets the stage for the fabrication of smaller, faster and more efficient opto-electronic interfaces, which could ultimately allow the development of significantly higher-performance sensors, computer chips and other electronic components.

Waveguides, including optical fibers, are used to transmit signals and power in a variety of radio and optical communications uses. Leti's new devices channel light through a narrow silicon waveguide placed in close proximity to a metal waveguide, causing the light to excite small, high-frequency electromagnetic waves, known as surface plasmons, in the metallic structures. The resulting devices can convert optical signals in the 1.5 micrometers (µm) communications band into plasmonic electron waves, and convert the plasmonic waves back into optical signals.

Leti's pioneering combination of extremely small plasmonic-optical interfaces that connect to standard optical fibers provides high coupling efficiencies (up to 70 percent) over a wide spectral range. And unlike previous devices that have relied on metal waveguides made from gold, Leti's metal waveguides are fabricated with copper, allowing them to be easily integrated into standard CMOS chip manufacturing processes.

"This demonstration of CMOS-compatible plasmonic-optical technology is a major milestone in the emerging field of metal-oxide-semiconductor photonics," said Laurent Fulbert, Photonics Programs Manager at Leti. "By concentrating light into very small modes, we can provide an efficient optical interface between the macroscopic world of optical fibers and the nano-scale world of transistors and molecular electronic devices."

The plasmonic-optical devices were designed and fabricated by Leti, which collaborated with France's Université de Technologie de Troyes (UTT) for additional near-field scanning optical microscope testing and characterization. The project results were presented earlier this month at the Group Four Photonics 2010 show in Beijing, and published in Nano Letters, a journal of the American Chemical Society.

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m” state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information, please click here

Contacts:
Press Contacts:

CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Possible Futures

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Sensors

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic