Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Demonstrates the Integration of CMOS-Compatible Plasmonic Optical Waveguides with Silicon Photonic Devices

Abstract:
Copper Waveguides Offer Potential for Developing Smaller, More Efficient, High-Performance Photonic Components

Leti Demonstrates the Integration of CMOS-Compatible Plasmonic Optical Waveguides with Silicon Photonic Devices

Grenoble, France | Posted on October 1st, 2010

CEA-Leti, a leading European research and development institute in the field of silicon photonics technology, today announced that it has demonstrated the efficient integration of silicon photonic devices with fully complementary metal-oxide semiconductor (CMOS)-compatible plasmonic optical waveguides.

This new capability sets the stage for the fabrication of smaller, faster and more efficient opto-electronic interfaces, which could ultimately allow the development of significantly higher-performance sensors, computer chips and other electronic components.

Waveguides, including optical fibers, are used to transmit signals and power in a variety of radio and optical communications uses. Leti's new devices channel light through a narrow silicon waveguide placed in close proximity to a metal waveguide, causing the light to excite small, high-frequency electromagnetic waves, known as surface plasmons, in the metallic structures. The resulting devices can convert optical signals in the 1.5 micrometers (µm) communications band into plasmonic electron waves, and convert the plasmonic waves back into optical signals.

Leti's pioneering combination of extremely small plasmonic-optical interfaces that connect to standard optical fibers provides high coupling efficiencies (up to 70 percent) over a wide spectral range. And unlike previous devices that have relied on metal waveguides made from gold, Leti's metal waveguides are fabricated with copper, allowing them to be easily integrated into standard CMOS chip manufacturing processes.

"This demonstration of CMOS-compatible plasmonic-optical technology is a major milestone in the emerging field of metal-oxide-semiconductor photonics," said Laurent Fulbert, Photonics Programs Manager at Leti. "By concentrating light into very small modes, we can provide an efficient optical interface between the macroscopic world of optical fibers and the nano-scale world of transistors and molecular electronic devices."

The plasmonic-optical devices were designed and fabricated by Leti, which collaborated with France's Université de Technologie de Troyes (UTT) for additional near-field scanning optical microscope testing and characterization. The project results were presented earlier this month at the Group Four Photonics 2010 show in Beijing, and published in Nano Letters, a journal of the American Chemical Society.

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m” state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information, please click here

Contacts:
Press Contacts:

CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Possible Futures

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Sensors

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

A molecular switch at the edge of graphene July 27th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Nanoelectronics

Flipping the switch on supramolecular electronics August 14th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Announcements

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Photonics/Optics/Lasers

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project