Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Solid Spheres

Abstract:
Nanospheres made of aromatic amino acids: The most rigid organic nanostructures to date

Solid Spheres

Weinheim, Germany | Posted on October 1st, 2010

Organic nanostructures are key elements of nanotechnology because these building blocks can be made with tailored chemical properties. Their disadvantage has been that their mechanical properties have so far been significantly inferior to those of metallic nanostructures. Ehud Gazit, Itay Rousso, and a team from the Tel Aviv University, the Weizmann Institute of Science and the Ben-Gurion University of the Negev (Israel) have now introduced organic nanospheres that are as rigid as metal. As the scientists report in the journal Angewandte Chemie, they are interesting components for ultrarigid biocomposite materials.

Nanoscale biological structures often exhibit unique mechanical properties; for example spider silk is 25 times as strong as steel by weight. The most rigid synthetic organic materials known to date are aramids, such as Kevlar. Their secret is a special spatial arrangement of their aromatic ring systems and the network of interactions between their planar amide bonds. The new nanospheres are based on a similar construction principle. However, unlike the large polymeric chains, they are formed in a self-organization process from very simple molecules based on aromatic dipeptides of the amino acid phenylalanine.

Using an atomic force microscope, the scientists examined the mechanical properties of their nanospheres. This device uses a nanotip (cantilever), a tiny flexible lever arm with a very fine tip at the end. When this tip is pressed against a sample, the deflection of the lever indicates whether the tip of the needle can press into the sample object and how far in it can go. A metal needle was not able to make any impression on the nanospheres; only a needle made of diamond was able to do it. The researchers used these measurements to calculate the elasticity modulus (Young's modulus) for the nanospheres. This value is a measure of the stiffness of a material. The larger the value, the more resistance a material has to its deformation. By using a high-resolution scanning electron microscope equipped with a nanomanipulator, it was possible to directly observe the deformation of the spheres.

For the nanospheres, the team measured a remarkably high elasticity modulus (275 GPa), which is higher than many metals and similar to the values found for steel. This makes these nanostructures the stiffest organic molecules to date; they may even eclipse aramids. In addition to having outstanding mechanical properties, the nanospheres are also transparent. This makes them ideal elements for the reinforcement of ultrarigid biocomposite materials, such as reinforced plastics for implants or materials for tooth replacement, aerospace, and other applications that require inexpensive, lightweight materials with high stiffness and unusual stability.

Author: Ehud Gazit, Tel Aviv University (Israel), www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness

Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201002037

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Chemists make new silicon-based nanomaterials March 27th, 2015

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Materials/Metamaterials

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE