Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Solid Spheres

Abstract:
Nanospheres made of aromatic amino acids: The most rigid organic nanostructures to date

Solid Spheres

Weinheim, Germany | Posted on October 1st, 2010

Organic nanostructures are key elements of nanotechnology because these building blocks can be made with tailored chemical properties. Their disadvantage has been that their mechanical properties have so far been significantly inferior to those of metallic nanostructures. Ehud Gazit, Itay Rousso, and a team from the Tel Aviv University, the Weizmann Institute of Science and the Ben-Gurion University of the Negev (Israel) have now introduced organic nanospheres that are as rigid as metal. As the scientists report in the journal Angewandte Chemie, they are interesting components for ultrarigid biocomposite materials.

Nanoscale biological structures often exhibit unique mechanical properties; for example spider silk is 25 times as strong as steel by weight. The most rigid synthetic organic materials known to date are aramids, such as Kevlar. Their secret is a special spatial arrangement of their aromatic ring systems and the network of interactions between their planar amide bonds. The new nanospheres are based on a similar construction principle. However, unlike the large polymeric chains, they are formed in a self-organization process from very simple molecules based on aromatic dipeptides of the amino acid phenylalanine.

Using an atomic force microscope, the scientists examined the mechanical properties of their nanospheres. This device uses a nanotip (cantilever), a tiny flexible lever arm with a very fine tip at the end. When this tip is pressed against a sample, the deflection of the lever indicates whether the tip of the needle can press into the sample object and how far in it can go. A metal needle was not able to make any impression on the nanospheres; only a needle made of diamond was able to do it. The researchers used these measurements to calculate the elasticity modulus (Young's modulus) for the nanospheres. This value is a measure of the stiffness of a material. The larger the value, the more resistance a material has to its deformation. By using a high-resolution scanning electron microscope equipped with a nanomanipulator, it was possible to directly observe the deformation of the spheres.

For the nanospheres, the team measured a remarkably high elasticity modulus (275 GPa), which is higher than many metals and similar to the values found for steel. This makes these nanostructures the stiffest organic molecules to date; they may even eclipse aramids. In addition to having outstanding mechanical properties, the nanospheres are also transparent. This makes them ideal elements for the reinforcement of ultrarigid biocomposite materials, such as reinforced plastics for implants or materials for tooth replacement, aerospace, and other applications that require inexpensive, lightweight materials with high stiffness and unusual stability.

Author: Ehud Gazit, Tel Aviv University (Israel), www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness

Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201002037

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Chemistry

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Possible Futures

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Materials/Metamaterials

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project