Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Solid Spheres

Abstract:
Nanospheres made of aromatic amino acids: The most rigid organic nanostructures to date

Solid Spheres

Weinheim, Germany | Posted on October 1st, 2010

Organic nanostructures are key elements of nanotechnology because these building blocks can be made with tailored chemical properties. Their disadvantage has been that their mechanical properties have so far been significantly inferior to those of metallic nanostructures. Ehud Gazit, Itay Rousso, and a team from the Tel Aviv University, the Weizmann Institute of Science and the Ben-Gurion University of the Negev (Israel) have now introduced organic nanospheres that are as rigid as metal. As the scientists report in the journal Angewandte Chemie, they are interesting components for ultrarigid biocomposite materials.

Nanoscale biological structures often exhibit unique mechanical properties; for example spider silk is 25 times as strong as steel by weight. The most rigid synthetic organic materials known to date are aramids, such as Kevlar. Their secret is a special spatial arrangement of their aromatic ring systems and the network of interactions between their planar amide bonds. The new nanospheres are based on a similar construction principle. However, unlike the large polymeric chains, they are formed in a self-organization process from very simple molecules based on aromatic dipeptides of the amino acid phenylalanine.

Using an atomic force microscope, the scientists examined the mechanical properties of their nanospheres. This device uses a nanotip (cantilever), a tiny flexible lever arm with a very fine tip at the end. When this tip is pressed against a sample, the deflection of the lever indicates whether the tip of the needle can press into the sample object and how far in it can go. A metal needle was not able to make any impression on the nanospheres; only a needle made of diamond was able to do it. The researchers used these measurements to calculate the elasticity modulus (Young's modulus) for the nanospheres. This value is a measure of the stiffness of a material. The larger the value, the more resistance a material has to its deformation. By using a high-resolution scanning electron microscope equipped with a nanomanipulator, it was possible to directly observe the deformation of the spheres.

For the nanospheres, the team measured a remarkably high elasticity modulus (275 GPa), which is higher than many metals and similar to the values found for steel. This makes these nanostructures the stiffest organic molecules to date; they may even eclipse aramids. In addition to having outstanding mechanical properties, the nanospheres are also transparent. This makes them ideal elements for the reinforcement of ultrarigid biocomposite materials, such as reinforced plastics for implants or materials for tooth replacement, aerospace, and other applications that require inexpensive, lightweight materials with high stiffness and unusual stability.

Author: Ehud Gazit, Tel Aviv University (Israel), www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness

Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201002037

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Chemistry

Graphene decharging and molecular shielding February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Possible Futures

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Materials/Metamaterials

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Graphene decharging and molecular shielding February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic