Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NSF Awards $109M to Cornell

Cornell employees James Sears and Don Heath work in the Newman Laboratory cleanroom assembling the superconducting radio-frequency cavity accelerating structure for the ERL injector prototype.
Cornell employees James Sears and Don Heath work in the Newman Laboratory cleanroom assembling the superconducting radio-frequency cavity accelerating structure for the ERL injector prototype.

Abstract:
$109 million NSF award funds X-ray science, research and development for revolutionary new X-ray source

By Anne Ju

NSF Awards $109M to Cornell

Ithaca, NY | Posted on October 1st, 2010

In a major boost for X-ray science and accelerator physics, the National Science Foundation (NSF) has committed about $109 million to Cornell's continued operation of an X-ray synchrotron facility, as well as to develop a new kind of X-ray source that promises to revolutionize the field.

The Cornell High Energy Synchrotron Source (CHESS), one of five national facilities for synchrotron X-ray research in the U.S., has received $77 million from the NSF to continue operations through at least March 2014. This complements an additional $7 million from the National Institutes of Health to provide support for biomedical research at CHESS. In addition, the NSF has also awarded Cornell $32 million toward research and development of a next-generation X-ray source technology, called an Energy Recovery Linac (ERL).

CHESS produces intense X-ray beams that serve an international community of researchers from academia, government and industry, in such fields as medicine, materials science, physics, engineering, chemistry and the humanities. The Cornell synchrotron activity is also among the world's most prolific training centers of accelerator- and X-ray-based scientists.

Facilities like CHESS provide biomedical researchers with detailed, atom-by-atom images of disease-causing viruses and important proteins in the human body. In the past seven years, two Nobel Prizes in chemistry have resulted from work done by CHESS users. CHESS is also used by scientists and students studying, for example, ways to make airplane wings that don't fatigue and crack, or to create new materials for fuel cells that will let automobiles run efficiently with minimal pollution.

"One of the most important functions our lab plays is to train imaginative students who become the science and engineering leaders of tomorrow," said CHESS Director Sol Gruner. "Because CHESS is embedded in the central Cornell campus, it is deeply integrated into the educational activities of the university. This is the reason why so many graduates from the Cornell synchrotron center have gone on to build and manage many accelerator-based scientific facilities across the globe."

X-ray and accelerator-based research at Cornell has been responsible for many seminal developments in the field. Continuing this tradition, the NSF has also awarded the $32 million to research and develop ERL technology.

Since about 2000, Cornell has been planning a $500 million ERL upgrade to CHESS, which would be the university's most ambitious facility upgrade to date. Cornell's ERL would be the most capable X-ray source in the world, with steady-state beams 1,000 times brighter than any in existence. Although Cornell must compete with other institutions for the right to build the ERL upgrade, the $32 million in research and development funds provide a solid foundation for the technology.

"The money for research and development is a major vote of confidence from the federal government for Cornell's leadership in accelerator physics and X-ray technology," Gruner said. "The expertise at Cornell puts us in a unique position to do this kind of work."

The $32 million will help develop an ultra-bright electron injector and linear accelerator, both based on superconducting technology. The injector creates tightly packed bunches of electrons and feeds them into the accelerator. The Cornell team also plans to prototype undulators, which are magnetic devices placed around the accelerator that produce the X-rays, as well as highly sophisticated X-ray detectors.

An ERL X-ray source would be a revolutionary tool for biology, medicine, materials and many basic science areas. "Much of modern science deals with trying to get down to the nanometer scale -- to look at single molecules and atoms," said Ernest Fontes, senior research associate and associate director of CHESS. "In order to get that small, you need a precise, ultra-bright X-ray source, such as would emerge from an ERL."

The scientific applications of X-rays have been growing steadily and form the largest activity at the Cornell facility. The new award completes a transition to a new primary steward, the NSF Division of Materials Research, which is concerned with X-ray applications. In the past, the NSF Physics Division, concerned with elementary particle physics studies, was the primary steward division.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Physics

Searching for errors in the quantum world September 21st, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Openings/New facilities/Groundbreaking/Expansion

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project