Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Renewable and Clean

Abstract:
New kind of fuel cell delivers energy and fine chemicals with no waste from renewable raw materials

Renewable and Clean

Weinheim, Germany | Posted on October 1st, 2010

The concept of converting renewable raw materials so cleverly that the same process simultaneously produces both energy and industrially desirable chemicals has been high on the wish-list for those who seek environmentally friendly and resource-saving chemistry. The process should also not release any carbon dioxide. In the journal Angewandte Chemie, Hansjörg Grützmacher, Francesco Vizza, and Claudio Bianchini and their co-workers from the ETH in Zürich (Switzerland) and the Consiglio Nazionale delle Ricerche (CNR) in Sesto Fiorentino (Italy) have now introduced a new kind of fuel cell: an organometallic fuel cell that efficiently converts alcohols and sugars into carboxylic acids.

Differing from established alcohol fuel cells—the direct alcohol fuel cell and the enzymatic biofuel cell—the organometallic fuel cell (OMFC) works in a completely different way. The secret behind its success is a special molecular complex of rhodium metal that functions as an anode catalyst. The scientists deposited the complex onto a carbon powder support. The interesting thing is that the active catalyst forms during the chemical reaction, and changes step-by-step throughout the catalytic cycle. In this way, a single metal complex forms different catalysts that are each specific for an individual reaction step: the conversion of an alcohol (e.g. ethanol) into the corresponding aldehyde, making the aldehyde into the corresponding carboxylic acid (e.g. acetic acid), and transferring protons (H+) and electrons. As well as alcohols, this system can also convert sugars such as glucose in the same way.

The researchers hope that their new approach could turn out to be a breakthrough in fuel-cell technology. A particular advantage of their new method is that molecular metal complexes are soluble in various solvents, which allows them to be very finely dispersed over very small surfaces. In addition, they provide a very high power density. This could be a way to further miniaturize fuel cells for use as power sources for biological applications like heart pacemakers and biosensors, as well as for the in-vivo monitoring of metabolic processes.

Through the right combination of a tailored molecular catalyst structure and a suitable support material, it could be possible to develop future fuel cells that very selectively convert starting materials with multiple alcohol groups into valuable premium chemicals without the generation of waste materials. This task is very difficult to accomplish by traditional methods.

Author: Hansjörg Grützmacher, ETH Zürich (Switzerland), www.gruetzmacher.ethz.ch/people/hansjoerg

Title: A Biologically Inspired Organometallic Fuel Cell (OMFC) That Converts Renewable Alcohols into Energy and Chemicals

Angewandte Chemie International Edition 2010, 49, No. 40, 7229-7233, Permalink to the article: dx.doi.org/10.1002/anie.201002234

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Announcements

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Environment

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Iranian Scientists Utilize Nanomembranes to Purify Wastewater of Olive Oil Plants August 20th, 2015

Fuel Cells

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

New spectroscopy technique provides unprecedented insights about the reactions powering fuel cells Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines August 12th, 2015

Pouring fire on fuels at the nanoscale August 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic