Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.
Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.

Abstract:
Engineering researchers from Tufts University, the University of Wisconsin-Madison and Harvard University have demonstrated the low-temperature efficacy of an atomically dispersed platinum catalyst, which could be suitable for on-board hydrogen production in fuel-cell-powered vehicles of the future.

Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Madison, WI | Posted on October 1st, 2010

An alternative to copper, which under certain conditions can ignite spontaneously, the platinum-based catalyst is highly active and stable. The researchers' understanding of the structure and function of the new catalyst could help manufacturers design highly effective — but less costly — catalysts on standard, inexpensive support metal oxides.

Led by Maria Flytzani-Stephanopoulos, a Tufts University School of Engineering professor of chemical and biological engineering, and Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering, the research team published its findings in the September 24, 2010, issue of the journal Science.

Only small amounts of hydrogen occur naturally on Earth — yet, according to the U.S. Department of Energy, the country's demand for hydrogen is about 9 million tons per year.

Manufacturers produce about 95 percent of this hydrogen through steam reforming of natural gas, a catalytic process in which steam reacts with methane to yield carbon monoxide and hydrogen. This mixture is known as synthesis gas, or syngas, and is an intermediate in production processes for synthetic fuels, ammonia and methanol, among other compounds.

Another application for hydrogen is fuel for the hydrogen economy, an effort that aims to exploit high-energy-density hydrogen as a cleaner source of energy, particularly for low-temperature fuel-cell-powered devices, including vehicles.

Fuel cells use electrochemical processes to convert hydrogen and oxygen into water, producing direct current that powers a motor. Fuel cell vehicles require highly purified hydrogen, which is produced through a water-gas-shift reaction. This key step strips "residual" carbon monoxide from hydrogen generated through steam reforming of fossil fuels, such as natural gas. Water-gas-shift catalysts decrease the amount of carbon monoxide in hydrogen and increase the hydrogen content by harvesting hydrogen from water molecules.

Catalysts currently used in industry for hydrogen purification are copper-based, supported on zinc oxide and alumina. Because copper is pyrophoric (it could spontaneously ignite when exposed to air; air in fuel cell operation is relatively common), researchers have considered platinum as a substitute. However, platinum is costly and, says Flytzani-Stephanopoulos, researchers must prepare it in very fine particles on more "exotic" supports, such as the rare-earth oxide ceria, which makes it effective for a low-temperature water-gas-shift reaction.

However, while cerium is the most abundant of the rare-earth elements, this natural abundance occurs in just a few places around the world, and, says Mavrikakis, access to it may be limited for various reasons, including geopolitical.

The Tufts researchers initially discovered that sodium improves the platinum activity in the water-gas-shift reaction, which now can take place at low temperatures, even on inert materials like silica. They carried out detailed structural studies and found extra active oxygen species on the surface that helped the platinum complete the reaction cycle. They also found that the sodium or potassium ions helped to stabilize the catalytic site.

In later experiments, they saw their catalyst perform as well as platinum on ceria. Collaborator David Bell of Harvard University used atomic-resolution electron microscopy to view stabilized platinum clusters and atoms on the silica support — visual confirmation that the new catalyst operates like those on ceria supports.

Mavrikakis' team set out to understand why. The researchers drew on powerful computational resources, including the UW-Madison Division of Information Technology and the Center for High-Throughput Computing, as well as an ultrafast 10G data network, to model the new catalyst, atom by atom. "There is no experimental way that you can look at the atoms ‘at work' — that is, while the reaction is happening," says Mavrikakis. "You need to start talking about individual atoms, which you can see with the highest-resolution electron microscopes — but not during the reaction. So you can only suggest that perhaps these atoms are active, but there is no way to substantiate it unless you put an atomic-scale quantum-mechanical model together and come up with a more realistic and well-founded suggestion about what is responsible for making this catalyst so active."

Although platinum is among the most expensive catalytic materials, the new catalyst contains only trace amounts of platinum, yet is robust and effective at low temperatures. Essentially, its structure is a series of small "clusters" comprising only a few atoms, each in a specific arrangement. Each cluster is composed of one or a few a platinum atoms surrounded by a mixture of oxygen, hydroxyl and potassium atoms and is "seated" on the standard aluminum or silica support.

The researchers say the advance is important in part because, through a combination of experiments and first-principles theory, the work reveals a new type of active site for a specific, very important chemical reaction. "Most of the time, people are happy to say, ‘Well, we've found a material. It works for a given application,'" says Mavrikakis.

In this case, says Flytzani-Stephanopoulos, the team took the next step to determine how and why the catalyst works. "If we want to move to the next stage with cheaper materials that are doing the specific chemical transformations, we need to understand the fundamentals," she says.

Other authors on the paper include UW-Madison postdoctoral associate Guowen Peng, PhD student Jeff Herron, and then-PhD students (now alumni) Peter Ferrin and Anand Nilekar; and Tufts University Research Professor Howard Saltsburg, postdoctoral associate Rui Si, PhD student Yanping Zhai and former PhD student Weiling Deng, and master's student Danny Pierre.

The U.S. Department of Energy and National Science Foundation provided primary funding for the research.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Environment

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

Automotive/Transportation

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

A protecting umbrella against oxygen: Toward fuel cells built from renewable and abundant components - Scientists from Bochum und Mülheim report in NATURE Chemistry August 4th, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE