Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.
Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.

Abstract:
Engineering researchers from Tufts University, the University of Wisconsin-Madison and Harvard University have demonstrated the low-temperature efficacy of an atomically dispersed platinum catalyst, which could be suitable for on-board hydrogen production in fuel-cell-powered vehicles of the future.

Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Madison, WI | Posted on October 1st, 2010

An alternative to copper, which under certain conditions can ignite spontaneously, the platinum-based catalyst is highly active and stable. The researchers' understanding of the structure and function of the new catalyst could help manufacturers design highly effective — but less costly — catalysts on standard, inexpensive support metal oxides.

Led by Maria Flytzani-Stephanopoulos, a Tufts University School of Engineering professor of chemical and biological engineering, and Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering, the research team published its findings in the September 24, 2010, issue of the journal Science.

Only small amounts of hydrogen occur naturally on Earth — yet, according to the U.S. Department of Energy, the country's demand for hydrogen is about 9 million tons per year.

Manufacturers produce about 95 percent of this hydrogen through steam reforming of natural gas, a catalytic process in which steam reacts with methane to yield carbon monoxide and hydrogen. This mixture is known as synthesis gas, or syngas, and is an intermediate in production processes for synthetic fuels, ammonia and methanol, among other compounds.

Another application for hydrogen is fuel for the hydrogen economy, an effort that aims to exploit high-energy-density hydrogen as a cleaner source of energy, particularly for low-temperature fuel-cell-powered devices, including vehicles.

Fuel cells use electrochemical processes to convert hydrogen and oxygen into water, producing direct current that powers a motor. Fuel cell vehicles require highly purified hydrogen, which is produced through a water-gas-shift reaction. This key step strips "residual" carbon monoxide from hydrogen generated through steam reforming of fossil fuels, such as natural gas. Water-gas-shift catalysts decrease the amount of carbon monoxide in hydrogen and increase the hydrogen content by harvesting hydrogen from water molecules.

Catalysts currently used in industry for hydrogen purification are copper-based, supported on zinc oxide and alumina. Because copper is pyrophoric (it could spontaneously ignite when exposed to air; air in fuel cell operation is relatively common), researchers have considered platinum as a substitute. However, platinum is costly and, says Flytzani-Stephanopoulos, researchers must prepare it in very fine particles on more "exotic" supports, such as the rare-earth oxide ceria, which makes it effective for a low-temperature water-gas-shift reaction.

However, while cerium is the most abundant of the rare-earth elements, this natural abundance occurs in just a few places around the world, and, says Mavrikakis, access to it may be limited for various reasons, including geopolitical.

The Tufts researchers initially discovered that sodium improves the platinum activity in the water-gas-shift reaction, which now can take place at low temperatures, even on inert materials like silica. They carried out detailed structural studies and found extra active oxygen species on the surface that helped the platinum complete the reaction cycle. They also found that the sodium or potassium ions helped to stabilize the catalytic site.

In later experiments, they saw their catalyst perform as well as platinum on ceria. Collaborator David Bell of Harvard University used atomic-resolution electron microscopy to view stabilized platinum clusters and atoms on the silica support — visual confirmation that the new catalyst operates like those on ceria supports.

Mavrikakis' team set out to understand why. The researchers drew on powerful computational resources, including the UW-Madison Division of Information Technology and the Center for High-Throughput Computing, as well as an ultrafast 10G data network, to model the new catalyst, atom by atom. "There is no experimental way that you can look at the atoms ‘at work' — that is, while the reaction is happening," says Mavrikakis. "You need to start talking about individual atoms, which you can see with the highest-resolution electron microscopes — but not during the reaction. So you can only suggest that perhaps these atoms are active, but there is no way to substantiate it unless you put an atomic-scale quantum-mechanical model together and come up with a more realistic and well-founded suggestion about what is responsible for making this catalyst so active."

Although platinum is among the most expensive catalytic materials, the new catalyst contains only trace amounts of platinum, yet is robust and effective at low temperatures. Essentially, its structure is a series of small "clusters" comprising only a few atoms, each in a specific arrangement. Each cluster is composed of one or a few a platinum atoms surrounded by a mixture of oxygen, hydroxyl and potassium atoms and is "seated" on the standard aluminum or silica support.

The researchers say the advance is important in part because, through a combination of experiments and first-principles theory, the work reveals a new type of active site for a specific, very important chemical reaction. "Most of the time, people are happy to say, ‘Well, we've found a material. It works for a given application,'" says Mavrikakis.

In this case, says Flytzani-Stephanopoulos, the team took the next step to determine how and why the catalyst works. "If we want to move to the next stage with cheaper materials that are doing the specific chemical transformations, we need to understand the fundamentals," she says.

Other authors on the paper include UW-Madison postdoctoral associate Guowen Peng, PhD student Jeff Herron, and then-PhD students (now alumni) Peter Ferrin and Anand Nilekar; and Tufts University Research Professor Howard Saltsburg, postdoctoral associate Rui Si, PhD student Yanping Zhai and former PhD student Weiling Deng, and master's student Danny Pierre.

The U.S. Department of Energy and National Science Foundation provided primary funding for the research.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Chemistry

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Environment

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Energy

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Fuel Cells

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE