Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.
Left to right: Chemical and Biological Engineering postdoctoral associate Guowen Peng, Professor Manos Mavrikakis, postdoctoral researcher Rahul Nabar, and PhD student Jeff Herron. Photo by Renee Meiller.

Abstract:
Engineering researchers from Tufts University, the University of Wisconsin-Madison and Harvard University have demonstrated the low-temperature efficacy of an atomically dispersed platinum catalyst, which could be suitable for on-board hydrogen production in fuel-cell-powered vehicles of the future.

Researchers discover less-expensive low-temperature catalyst for hydrogen purification

Madison, WI | Posted on October 1st, 2010

An alternative to copper, which under certain conditions can ignite spontaneously, the platinum-based catalyst is highly active and stable. The researchers' understanding of the structure and function of the new catalyst could help manufacturers design highly effective — but less costly — catalysts on standard, inexpensive support metal oxides.

Led by Maria Flytzani-Stephanopoulos, a Tufts University School of Engineering professor of chemical and biological engineering, and Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering, the research team published its findings in the September 24, 2010, issue of the journal Science.

Only small amounts of hydrogen occur naturally on Earth — yet, according to the U.S. Department of Energy, the country's demand for hydrogen is about 9 million tons per year.

Manufacturers produce about 95 percent of this hydrogen through steam reforming of natural gas, a catalytic process in which steam reacts with methane to yield carbon monoxide and hydrogen. This mixture is known as synthesis gas, or syngas, and is an intermediate in production processes for synthetic fuels, ammonia and methanol, among other compounds.

Another application for hydrogen is fuel for the hydrogen economy, an effort that aims to exploit high-energy-density hydrogen as a cleaner source of energy, particularly for low-temperature fuel-cell-powered devices, including vehicles.

Fuel cells use electrochemical processes to convert hydrogen and oxygen into water, producing direct current that powers a motor. Fuel cell vehicles require highly purified hydrogen, which is produced through a water-gas-shift reaction. This key step strips "residual" carbon monoxide from hydrogen generated through steam reforming of fossil fuels, such as natural gas. Water-gas-shift catalysts decrease the amount of carbon monoxide in hydrogen and increase the hydrogen content by harvesting hydrogen from water molecules.

Catalysts currently used in industry for hydrogen purification are copper-based, supported on zinc oxide and alumina. Because copper is pyrophoric (it could spontaneously ignite when exposed to air; air in fuel cell operation is relatively common), researchers have considered platinum as a substitute. However, platinum is costly and, says Flytzani-Stephanopoulos, researchers must prepare it in very fine particles on more "exotic" supports, such as the rare-earth oxide ceria, which makes it effective for a low-temperature water-gas-shift reaction.

However, while cerium is the most abundant of the rare-earth elements, this natural abundance occurs in just a few places around the world, and, says Mavrikakis, access to it may be limited for various reasons, including geopolitical.

The Tufts researchers initially discovered that sodium improves the platinum activity in the water-gas-shift reaction, which now can take place at low temperatures, even on inert materials like silica. They carried out detailed structural studies and found extra active oxygen species on the surface that helped the platinum complete the reaction cycle. They also found that the sodium or potassium ions helped to stabilize the catalytic site.

In later experiments, they saw their catalyst perform as well as platinum on ceria. Collaborator David Bell of Harvard University used atomic-resolution electron microscopy to view stabilized platinum clusters and atoms on the silica support — visual confirmation that the new catalyst operates like those on ceria supports.

Mavrikakis' team set out to understand why. The researchers drew on powerful computational resources, including the UW-Madison Division of Information Technology and the Center for High-Throughput Computing, as well as an ultrafast 10G data network, to model the new catalyst, atom by atom. "There is no experimental way that you can look at the atoms ‘at work' — that is, while the reaction is happening," says Mavrikakis. "You need to start talking about individual atoms, which you can see with the highest-resolution electron microscopes — but not during the reaction. So you can only suggest that perhaps these atoms are active, but there is no way to substantiate it unless you put an atomic-scale quantum-mechanical model together and come up with a more realistic and well-founded suggestion about what is responsible for making this catalyst so active."

Although platinum is among the most expensive catalytic materials, the new catalyst contains only trace amounts of platinum, yet is robust and effective at low temperatures. Essentially, its structure is a series of small "clusters" comprising only a few atoms, each in a specific arrangement. Each cluster is composed of one or a few a platinum atoms surrounded by a mixture of oxygen, hydroxyl and potassium atoms and is "seated" on the standard aluminum or silica support.

The researchers say the advance is important in part because, through a combination of experiments and first-principles theory, the work reveals a new type of active site for a specific, very important chemical reaction. "Most of the time, people are happy to say, ‘Well, we've found a material. It works for a given application,'" says Mavrikakis.

In this case, says Flytzani-Stephanopoulos, the team took the next step to determine how and why the catalyst works. "If we want to move to the next stage with cheaper materials that are doing the specific chemical transformations, we need to understand the fundamentals," she says.

Other authors on the paper include UW-Madison postdoctoral associate Guowen Peng, PhD student Jeff Herron, and then-PhD students (now alumni) Peter Ferrin and Anand Nilekar; and Tufts University Research Professor Howard Saltsburg, postdoctoral associate Rui Si, PhD student Yanping Zhai and former PhD student Weiling Deng, and master's student Danny Pierre.

The U.S. Department of Energy and National Science Foundation provided primary funding for the research.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Chemistry

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Environment

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Energy

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Automotive/Transportation

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Fuel Cells

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project