Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Multi-Component Nano-Structures with Tunable Optical Properties

BNL scientists used DNA linkers with three binding sites (black “strings”) to connect gold nanoparticles (orange and red spheres) and fluorescent dye molecules (blue spheres) tagged with complementary DNA sequences. These units are self-assembled to form a body-center cubic lattice with nanoparticles at the corners and in the center, and fluorescent dye molecules in between.
BNL scientists used DNA linkers with three binding sites (black “strings”) to connect gold nanoparticles (orange and red spheres) and fluorescent dye molecules (blue spheres) tagged with complementary DNA sequences. These units are self-assembled to form a body-center cubic lattice with nanoparticles at the corners and in the center, and fluorescent dye molecules in between.

Abstract:
Another step toward applications in solar energy, sensors, and nanoscale circuits

Multi-Component Nano-Structures with Tunable Optical Properties

Upton, NY | Posted on October 1st, 2010

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory report the first successful assembly of 3-D multi-component nanoscale structures with tunable optical properties that incorporate light-absorbing and -emitting particles. This work, using synthetic DNA as a programmable component to link the nanoparticles, demonstrates the versatility of DNA-based nanotechnology for the fabrication of functional classes of materials, particularly optical ones, with possible applications in solar-energy conversion devices, sensors, and nanoscale circuits. The research was published online September 29, 2010, in the journal NanoLetters.

"For the first time we have demonstrated a strategy for the assembly of 3-D, well-defined, optically active structures using DNA encoded components of different types," said lead author Oleg Gang of Brookhaven's Center for Functional Nanomaterials (CFN). Like earlier work by Gang and his colleagues, this technique makes use of the high specificity of binding between complementary strands of DNA to link particles together in a precise way.

In the current study, the DNA linker molecules had three binding sites. The two ends of the strands were designed to bind to complementary strands on "plasmonic" gold nanoparticles — particles in which a particular wavelength of light induces a collective oscillation of the conductive electrons, leading to strong absorption of light at that wavelength. The internal part of each DNA linker was coded to recognize a complementary strand chemically bound to a fluorescent dye molecule. This setup resulted in the self-assembly of 3-D body centered cubic crystalline structures with gold nanoparticles located at each corner of the cube and in the center, with dye molecules at defined positions in between.

The scientists also demonstrated that the assembled structures can be dynamically tuned by altering the salt concentration of the solution in which they are formed. Changes in salinity alter the length of the negatively charged DNA molecules, leading to reversible contraction and expansion of the whole lattice by about 30 percent in length.

"It has long been understood that the distance between metal nanoparticles and paired dye molecules can affect the optical properties of the latter," said Matthew Sfeir, coauthor and an optical scientist at the CFN. In this experiment, the expansion and contraction of the crystal lattice triggered by the changes in salt concentration allowed for a dramatic modulation of an optical response: a three-fold increase in the emission rate of the fluorescent molecules was observed.

These results were determined using a combination of small angle x-ray scattering at Brookhaven's National Synchrotron Light Source (NSLS) and time-resolved fluorescent methods at the CFN. "This combination of synchrotron-based structural methods and time-resolved optical imaging techniques provided invaluable direct insight into the relationship between the structure and fluorescent properties of these light emitting arrays," Gang said.

"Our study tackles important questions about the self-assembly of systems from components of multiple types. Such systems potentially allow for the modulation of properties of individual components, and might lead to the emergence of new behavior due to collective effects. This assembly approach can be applied to explore such collective behavior of three-dimensional nano-optical arrays — for example, the influence of the plasmonic lattice on quantum dots.

"An understanding of these interactions would be relevant for developing novel optical materials for photovoltaic, photocatalysis, computing, and light-emitting applications. We now have an approach to make these structures and further study these effects."

This research was funded by the DOE Office of Science. In addition to Gang and Sfeir, Huiming Xiong of the CFN and Shanghai Jiao Tong University was a coauthor on this work.

The Center for Functional Nanomaterials at BNL is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale that are supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

Possible Futures

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Chip Technology

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Nanoelectronics

Exploring phosphorene, a promising new material April 29th, 2016

Physicists build 'electronic synapses' for neural networks April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Materials/Metamaterials

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic