Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Semiconductor could turn heat into computing power

Joseph Heremans
Joseph Heremans

Abstract:
Computers might one day recycle part of their own waste heat, using a material being studied by researchers at Ohio State University.

Semiconductor could turn heat into computing power

Columbus, OH | Posted on September 27th, 2010

The material is a semiconductor called gallium manganese arsenide. In the early online edition of Nature Materials, researchers describe the detection of an effect that converts heat into a quantum mechanical phenomenon - known as spin - in a semiconductor.

Once developed, the effect could enable integrated circuits that run on heat, rather than electricity.

This research merges two cutting-edge technologies: thermo-electricity and spintronics, explained team leaders Joseph Heremans, Ohio Eminent Scholar in Nanotechnology, and Roberto Myers, assistant professor of materials science and electrical engineering at Ohio State University.

Researchers around the world are working to develop electronics that utilize the spin of electrons to read and write data. So-called "spintronics" are desirable because in principle they could store more data in less space, process data faster, and consume less power.

Myers and Heremans are trying to combine spintronics with thermo-electronics - that is, devices that convert heat to electricity.

The hybrid technology, "thermo-spintronics," would convert heat to electron spin.

In so doing, thermo-spintronics could solve two problems for the computing industry: how to remove waste heat, and how to boost computing power without creating more heat.

"Spintronics is considered as a possible basis for new computers in part because the technology is claimed to produce no heat. Our measurements shed light on the thermodynamics of spintronics, and may help address the validity of this claim," Heremans said.

In fact, as the electronics industry tries to build smaller, denser computer circuits, a main limiting factor is the heat those circuits produce, said Myers.

"All of the computers we have now could actually run much faster than they do, but they're not allowed to - because if they did, they would fail after a short time," Myers said. "So a huge amount of money in the semiconductor industry is put toward thermal management."

In one possible use of thermo-spintronics, a device could sit atop a traditional microprocessor, and siphon waste heat away to run additional memory or computation. Myers noted that such applications are still a long way off.

The researchers studied how heat can be converted to spin polarization- an effect called the spin-Seebeck effect. It was first identified by researchers at Tohoku University and reported in a 2008 paper in the journal Nature. Those researchers detected the effect in a piece of metal, rather than a semiconductor.

The new measurements, carried out by team member Christopher Jaworski, doctoral student of mechanical engineering at Ohio State, provide the first independent verification of the effect in a semiconductor material called gallium manganese arsenide.

While gallium arsenide is a semiconductor used in cell phones today, the addition of the element manganese endows the material with magnetic properties.

Samples of this material were carefully prepared into thin single-crystal films by collaborators Shawn Mack and Professor David Awschalom at the University of California at Santa Barbara, who also assisted with interpretation of the results. Jing Yang, doctoral student of materials science and engineering at Ohio State, then processed the samples for the experiment.

In this type of material, the spins of the charges line up parallel with the orientation of the sample's overall magnetic field. So when the Ohio State researchers were trying to detect the spins of the electrons, they were really measuring whether the electrons in any particular area of the material were oriented as "spin-up" or "spin-down."

In the experiment, they heated one side of the sample, and then measured the orientations of spins on the hot side and the cool side. On the hot side, the electrons were oriented in the spin-up direction, and on the cool side, they were spin-down.

The researchers also discovered, to their own surprise, that two pieces of the material do not need to be physically connected for the effect to propagate from one to the other.

They scraped away a portion of the sample with a file, to create two pieces of material separated by a tiny gap. If the spin effect were caused by electrical conduction - that is, electrons flowing from one part of the material to the other - then the gap would block the effect from spreading. Again, they applied heat to one side.

The effect persisted.

"We figured that each piece would have its own distribution of spin-up and spin-down electrons," said Myers. "Instead, one side of the first piece was spin up, and the far side of the second piece was spin down. The effect somehow crossed the gap."

"The original spin-Seebeck detection by the Tohoku group baffled all theoreticians," Heremans added. "In this study, we've independently confirmed those measurements on a completely different material. We've proven we can get the same results as the Tohoku group, even when we take the measurements on a sample that's been separated into two pieces, so that electrons couldn't possibly pass between them."

Despite these new experiments, the origin of the spin-Seebeck effect remains a mystery.

This work was supported by the National Science Foundation, the Office of Naval Research, and the Ohio Eminent Scholar Discretionary Fund. Partial support was provided by The Ohio State University Institute for Materials Research.

####

Contacts:
Joseph Heremans
(614) 247-8869


Roberto Myers
(614) 292-8439


Written by
Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Chip Technology

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Military

New imaging agent provides better picture of the gut July 25th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE