Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists cross hurdle in quantum manipulation of matter

Abstract:
Team successfully decoupled a single quantum spin from its surroundings

Physicists cross hurdle in quantum manipulation of matter

Ames, IA | Posted on September 21st, 2010

Finding ways to control matter at the level of single atoms and electrons fascinates many scientists and engineers because the ability to manipulate single charges and single magnetic moments (spins) may help researchers penetrate deep into the mysteries of quantum mechanics and modern solid-state physics. It may also allow development of new, highly sensitive magnetometers with nanometer resolution, single-spin transistors for coherent spintronics, and solid-state devices for quantum information processing.

Recently, a collaboration of experimentalists from the Kavli Institute of Nanosciences at Delft University of Technology and theorists at the U.S. Department of Energy's Ames Laboratory made a breakthrough in the area of controlling single quantum spins. The results were published in Science Express on Sept. 9.

The researchers developed and implemented a special kind of quantum control over a single quantum magnetic moment (spin) of an atomic-sized impurity in diamond. These impurities, called nitrogen-vacancy (or N-V) centers, have attracted much attention due to their unusual magnetic and optical properties. But their fragile quantum states are easily destroyed by even miniscule interactions with the outside world.

By applying a specially designed sequence of high-precision electromagnetic pulses, the scientists were able to protect the arbitrary quantum state of a single spin, and they made the spin evolve as if it was completely decoupled from the outside world. In this way, scientists achieved a 25-fold increase in the lifetime of the quantum spin state at room temperature. This is the first demonstration of a universal dynamical decoupling realized on a single solid state quantum spin.

"Uncontrolled interactions of the spins with the environment have been the major hurdle for implementing quantum technologies" said the leader of Dutch experimental group, associate professor Ronald Hanson from Kavli Institute of Nanoscience at Delft. "Our results demonstrate that this hurdle can be overcome by advanced control of the spin itself."

"Implementing dynamical decoupling on a single quantum spin in solid state at room temperature has been an appealing but distant goal for quite a while. In the meantime, much theoretical and experimental knowledge has been accumulated in the community," added Viatcheslav Dobrovitski, who led the theoretical research effort at the Ames Laboratory. "We used this knowledge to design our pulse sequences, and the collaboration between theory and experiment greatly helped us in this work."

Besides its importance to fundamental understanding of quantum mechanics, the team's achievement opens a way to using the impurity centers in diamond as highly sensitive nanoscale magnetic sensors, and potentially, as qubits for larger-scale quantum information processing.

####

For more information, please click here

Contacts:
Viatcheslav Dobrovitski, USDOE's Ames Laboratory,
+1-515-294-8666

Ronald Hanson, Kavli Institute of Nanosciences at Delft University of Technology,
+31-15-2787188

Breehan Gerleman Lucchesi, USDOE’s Ames Laboratory Public Affairs,
+1-515-294-9750

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project