Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicists cross hurdle in quantum manipulation of matter

Abstract:
Team successfully decoupled a single quantum spin from its surroundings

Physicists cross hurdle in quantum manipulation of matter

Ames, IA | Posted on September 21st, 2010

Finding ways to control matter at the level of single atoms and electrons fascinates many scientists and engineers because the ability to manipulate single charges and single magnetic moments (spins) may help researchers penetrate deep into the mysteries of quantum mechanics and modern solid-state physics. It may also allow development of new, highly sensitive magnetometers with nanometer resolution, single-spin transistors for coherent spintronics, and solid-state devices for quantum information processing.

Recently, a collaboration of experimentalists from the Kavli Institute of Nanosciences at Delft University of Technology and theorists at the U.S. Department of Energy's Ames Laboratory made a breakthrough in the area of controlling single quantum spins. The results were published in Science Express on Sept. 9.

The researchers developed and implemented a special kind of quantum control over a single quantum magnetic moment (spin) of an atomic-sized impurity in diamond. These impurities, called nitrogen-vacancy (or N-V) centers, have attracted much attention due to their unusual magnetic and optical properties. But their fragile quantum states are easily destroyed by even miniscule interactions with the outside world.

By applying a specially designed sequence of high-precision electromagnetic pulses, the scientists were able to protect the arbitrary quantum state of a single spin, and they made the spin evolve as if it was completely decoupled from the outside world. In this way, scientists achieved a 25-fold increase in the lifetime of the quantum spin state at room temperature. This is the first demonstration of a universal dynamical decoupling realized on a single solid state quantum spin.

"Uncontrolled interactions of the spins with the environment have been the major hurdle for implementing quantum technologies" said the leader of Dutch experimental group, associate professor Ronald Hanson from Kavli Institute of Nanoscience at Delft. "Our results demonstrate that this hurdle can be overcome by advanced control of the spin itself."

"Implementing dynamical decoupling on a single quantum spin in solid state at room temperature has been an appealing but distant goal for quite a while. In the meantime, much theoretical and experimental knowledge has been accumulated in the community," added Viatcheslav Dobrovitski, who led the theoretical research effort at the Ames Laboratory. "We used this knowledge to design our pulse sequences, and the collaboration between theory and experiment greatly helped us in this work."

Besides its importance to fundamental understanding of quantum mechanics, the team's achievement opens a way to using the impurity centers in diamond as highly sensitive nanoscale magnetic sensors, and potentially, as qubits for larger-scale quantum information processing.

####

For more information, please click here

Contacts:
Viatcheslav Dobrovitski, USDOE's Ames Laboratory,
+1-515-294-8666

Ronald Hanson, Kavli Institute of Nanosciences at Delft University of Technology,
+31-15-2787188

Breehan Gerleman Lucchesi, USDOE’s Ames Laboratory Public Affairs,
+1-515-294-9750

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Possible Futures

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Academic/Education

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Spintronics

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Scientists push valleytronics 1 step closer to reality: Berkeley Lab and UC Berkeley researchers control a promising new way to encode electrons April 6th, 2016

Announcements

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Effect of the Van-der-Waals and intramolecular forces: The tertiary system of nucleotide chain -- gold nanoparticles--- carbon nanotube represents a great interest in the modern research and application of the bio-nano-technologies May 6th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Quantum nanoscience

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

The atom without properties April 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic