Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > End of Microplates?

The new electronic microplate is shown in front of the technology it aims to replace, the conventional microplate. Credit: Gary Meek
The new electronic microplate is shown in front of the technology it aims to replace, the conventional microplate. Credit: Gary Meek

Abstract:
Novel Electronic Biosensing Technology Could Facilitate a New Era of Personalized Medicine

End of Microplates?

Atlanta, GA | Posted on September 20th, 2010

The multi-welled microplate, long a standard tool in biomedical research and diagnostic laboratories, could become a thing of the past thanks to new electronic biosensing technology developed by a team of microelectronics engineers and biomedical scientists at the Georgia Institute of Technology.

Essentially arrays of tiny test tubes, microplates have been used for decades to simultaneously test multiple samples for their responses to chemicals, living organisms or antibodies. Fluorescence or color changes in labels associated with compounds on the plates can signal the presence of particular proteins or gene sequences.

The researchers hope to replace these microplates with modern microelectronics technology, including disposable arrays containing thousands of electronic sensors connected to powerful signal processing circuitry. If they're successful, this new electronic biosensing platform could help realize the dream of personalized medicine by making possible real-time disease diagnosis - potentially in a physician's office - and by helping select individualized therapeutic approaches.

"This technology could help facilitate a new era of personalized medicine," said John McDonald, chief research scientist at the Ovarian Cancer Institute in Atlanta and a professor in the Georgia Tech School of Biology. "A device like this could quickly detect in individuals the gene mutations that are indicative of cancer and then determine what would be the optimal treatment. There are a lot of potential applications for this that cannot be done with current analytical and diagnostic technology."

Fundamental to the new biosensing system is the ability to electronically detect markers that differentiate between healthy and diseased cells. These markers could be differences in proteins, mutations in DNA or even specific levels of ions that exist at different amounts in cancer cells. Researchers are finding more and more differences like these that could be exploited to create fast and inexpensive electronic detection techniques that don't rely on conventional labels.

"We have put together several novel pieces of nanoelectronics technology to create a method for doing things in a very different way than what we have been doing," said Muhannad Bakir, an associate professor in Georgia Tech's School of Electrical and Computer Engineering. "What we are creating is a new general-purpose sensing platform that takes advantage of the best of nanoelectronics and three-dimensional electronic system integration to modernize and add new applications to the old microplate application. This is a marriage of electronics and molecular biology."

The three-dimensional sensor arrays are fabricated using conventional low-cost, top-down microelectronics technology. Though existing sample preparation and loading systems may have to be modified, the new biosensor arrays should be compatible with existing work flows in research and diagnostic labs.

"We want to make these devices simple to manufacture by taking advantage of all the advances made in microelectronics, while at the same time not significantly changing usability for the clinician or researcher," said Ramasamy Ravindran, a graduate research assistant in Georgia Tech's Nanotechnology Research Center and the School of Electrical and Computer Engineering.

A key advantage of the platform is that sensing will be done using low-cost, disposable components, while information processing will be done by reusable conventional integrated circuits connected temporarily to the array. Ultra-high density spring-like mechanically compliant connectors and advanced "through-silicon vias" will make the electrical connections while allowing technicians to replace the biosensor arrays without damaging the underlying circuitry.

Separating the sensing and processing portions allows fabrication to be optimized for each type of device, notes Hyung Suk Yang, a graduate research assistant also working in the Nanotechnology Research Center. Without the separation, the types of materials and processes that can be used to fabricate the sensors are severely limited.

The sensitivity of the tiny electronic sensors can often be greater than current systems, potentially allowing diseases to be detected earlier. Because the sample wells will be substantially smaller than those of current microplates - allowing a smaller form factor - they could permit more testing to be done with a given sample volume.

The technology could also facilitate use of ligand-based sensing that recognizes specific genetic sequences in DNA or messenger RNA. "This would very quickly give us an indication of the proteins that are being expressed by that patient, which gives us knowledge of the disease state at the point-of-care," explained Ken Scarberry, a postdoctoral fellow in McDonald's lab.

So far, the researchers have demonstrated a biosensing system with silicon nanowire sensors in a 16-well device built on a one-centimeter by one-centimeter chip. The nanowires, just 50 by 70 nanometers, differentiated between ovarian cancer cells and healthy ovarian epithelial cells at a variety of cell densities.

Silicon nanowire sensor technology can be used to simultaneously detect large numbers of different cells and biomaterials without labels. Beyond that versatile technology, the biosensing platform could accommodate a broad range of other sensors - including technologies that may not exist yet. Ultimately, hundreds of thousands of different sensors could be included on each chip, enough to rapidly detect markers for a broad range of diseases.

"Our platform idea is really sensor agnostic," said Ravindran. "It could be used with a lot of different sensors that people are developing. It would give us an opportunity to bring together a lot of different kinds of sensors in a single chip."

Genetic mutations can lead to a large number of different disease states that can affect a patient's response to disease or medication, but current labeled sensing methods are limited in their ability to detect large numbers of different markers simultaneously.

Mapping single nucleotide polymorphisms (SNPs), variations that account for approximately 90 percent of human genetic variation, could be used to determine a patient's propensity for a disease, or their likelihood of benefitting from a particular intervention. The new biosensing technology could enable caregivers to produce and analyze SNP maps at the point-of-care.

Though many technical challenges remain, the ability to screen for thousands of disease markers in real-time has biomedical scientists like McDonald excited.

"With enough sensors in there, you could theoretically put all possible combinations on the array," he said. "This has not been considered possible until now because making an array large enough to detect them all with current technology is probably not feasible. But with microelectronics technology, you can easily include all the possible combinations, and that changes things."

Papers describing the biosensing device were presented at the Electronic Components and Technology Conference and the International Interconnect Technology conference in June 2010. The research has been supported in part by the National Nanotechnology Infrastructure Network (NNIN), Georgia Tech's Integrative BioSystems Institute (IBSI) and the Semiconductor Research Corporation.

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Possible Futures

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Sensors

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE