Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bayer MaterialScience develops film technologies for printed polymer electronics

Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process. This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components. Bayer MaterialScience will be showcasing a range of new developments at the K 2010 trade fair.
Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process. This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components. Bayer MaterialScience will be showcasing a range of new developments at the K 2010 trade fair.

Abstract:
Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process.

Bayer MaterialScience develops film technologies for printed polymer electronics

Leverkusen | Posted on September 17th, 2010

"This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components," explains Dirk Pophusen, head of business development for functional films in the Europe, Middle East, Africa, Latin America region at Bayer MaterialScience.

According to forecasts by British market research company IDTechEx, the global market for polymer electronics is set to grow to almost USD 100 billion by 2020 and reach USD 250 billion just five years later. "We are looking to benefit from this with our film business and are committed to close collaboration with manufacturers of these electronic modules at all stages of component production. Our aim is to work together to develop customized solutions," says Pophusen.

Films offer various benefits in printed polymer electronics. They can be printed in a limited space with several electronic functions such as wiring diagrams, actuators, sensors and antennae, which previously had to be applied as separate components. Integrating these functions therefore cuts the number of parts required and the amount of logistical and assembly work. This results in compact, ready-to-install "all-in-one" electronic modules that require a minimum of space, thus reflecting the trend toward miniaturization in electronics.

New hardcoat film - thermoformable and resistant to abrasion and chemicals

The three-dimensional formable hardcoat film Makrofol® HF, for example, is a recent product innovation. The basis for the film's excellent formability - which also enables narrow radii and high depths of draw - is that the scratch-resistant coating is only pre-cured and is not completely cured with standard UV lamps until forming is finished. The polycarbonate film produces surfaces with a deep gloss finish that are highly resistant to chemicals and abrasion. When working with 3D display elements, for example, they are ideal for increasingly popular high-gloss piano finishes in combination with "vanish-effect" technologies. These make the contours of light symbols appear to vanish when these are switched off (Black Panel Technology).

Artificial muscles and luminescent 3D surfaces

Following the acquisition of Artificial Muscle Inc., Bayer MaterialScience also has the know-how to manufacture electrically activated, artificial muscles as actuators and sensors and integrate them into systems. For example, they make touchscreen fields "tangible" because they offer a tactile response when the display is touched. They are largely wear-resistant, unlike conventional mechanical buttons.

This creates considerable scope for use in areas such as manufacturing smartphones, games controllers and touchpads and automotive engineering. In conjunction with its partners, Bayer MaterialScience has developed the prototype for a large, one-piece 3D central console that integrates features such as a capacitative and electrically activated switch as a central control element. The component can be seen at Bayer MaterialScience's stand at the K 2010 plastics fair in Düsseldorf.

As well as electronic elements, the light "function" can also be integrated into appropriate 3D film components using the film insert molding (FIM) process. Conventional technologies with LEDs can also be used as a light source, and so too can large-area electroluminescent systems. In conjunction with Add-Vision Inc., for example, Bayer MaterialScience is currently working on printing flexible, polymer organic LEDs onto polycarbonate films. A bright future is forecast for these P-OLEDs in areas producing displays, for instance.

Conductive nano inks for flexible circuits

Bayer MaterialScience develops conductive nano inks for use in areas such as printed polymer electronics under the BayInk® name. These can be applied digitally using conventional printing technology such as the ink-jet method. Depending on the process, it is possible to apply line widths with a resolution of less than 30 micrometers that are no longer visible to the human eye. This enables conductor tracks, contacts and electrodes to be applied much more easily and effectively than with conventional methods, which are mostly more complicated and more energy- and material-intensive. The inks adhere to a very wide range of plastic films such as Makrofol® and Bayfol® and other flexible materials, as well as to rigid substrates. The range of applications is wide - for example, as invisible conductor tracks they can be used to simplify the complex design of touchscreens.

Customized service along the entire process chain

"Our development partners benefit from the fact that our Technical Service Center for Films is equipped with state-of-the-art machinery and equipment covering every stage of the FIM process chain for producing printed polymer electronics," says Pophusen. For example, the Functional Films unit employs fully automatic screen printing systems, rapid prototyping and high-pressure forming (HPF) units that allow printed films to be thermoformed with minimal distortion. These systems have recently been joined by an HPF machine that can handle much larger film formats measuring up to 500 x 1,000 millimeters. The FIM process chain is rounded off by injection and injection-compression molding machines of various sizes that are equipped with the relevant facilities for film processing.

####

About Bayer MaterialScience
With 2009 sales of EUR 7.5 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2009, Bayer MaterialScience had 30 production sites and employed approximately 14,300 people around the globe. Bayer MaterialScience is a Bayer Group company.

For more information, please click here

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project