Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bayer MaterialScience develops film technologies for printed polymer electronics

Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process. This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components. Bayer MaterialScience will be showcasing a range of new developments at the K 2010 trade fair.
Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process. This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components. Bayer MaterialScience will be showcasing a range of new developments at the K 2010 trade fair.

Abstract:
Bayer MaterialScience has developed extensive technology know-how and a wide range of materials for customers who print polycarbonate films with electronic functions and process these into 3D electronic components using the film insert molding process.

Bayer MaterialScience develops film technologies for printed polymer electronics

Leverkusen | Posted on September 17th, 2010

"This printed polymer electronics technology is seen as a next-generation technology for delivering cost-effective production of highly integrated, complex molded electronic components," explains Dirk Pophusen, head of business development for functional films in the Europe, Middle East, Africa, Latin America region at Bayer MaterialScience.

According to forecasts by British market research company IDTechEx, the global market for polymer electronics is set to grow to almost USD 100 billion by 2020 and reach USD 250 billion just five years later. "We are looking to benefit from this with our film business and are committed to close collaboration with manufacturers of these electronic modules at all stages of component production. Our aim is to work together to develop customized solutions," says Pophusen.

Films offer various benefits in printed polymer electronics. They can be printed in a limited space with several electronic functions such as wiring diagrams, actuators, sensors and antennae, which previously had to be applied as separate components. Integrating these functions therefore cuts the number of parts required and the amount of logistical and assembly work. This results in compact, ready-to-install "all-in-one" electronic modules that require a minimum of space, thus reflecting the trend toward miniaturization in electronics.

New hardcoat film - thermoformable and resistant to abrasion and chemicals

The three-dimensional formable hardcoat film Makrofol® HF, for example, is a recent product innovation. The basis for the film's excellent formability - which also enables narrow radii and high depths of draw - is that the scratch-resistant coating is only pre-cured and is not completely cured with standard UV lamps until forming is finished. The polycarbonate film produces surfaces with a deep gloss finish that are highly resistant to chemicals and abrasion. When working with 3D display elements, for example, they are ideal for increasingly popular high-gloss piano finishes in combination with "vanish-effect" technologies. These make the contours of light symbols appear to vanish when these are switched off (Black Panel Technology).

Artificial muscles and luminescent 3D surfaces

Following the acquisition of Artificial Muscle Inc., Bayer MaterialScience also has the know-how to manufacture electrically activated, artificial muscles as actuators and sensors and integrate them into systems. For example, they make touchscreen fields "tangible" because they offer a tactile response when the display is touched. They are largely wear-resistant, unlike conventional mechanical buttons.

This creates considerable scope for use in areas such as manufacturing smartphones, games controllers and touchpads and automotive engineering. In conjunction with its partners, Bayer MaterialScience has developed the prototype for a large, one-piece 3D central console that integrates features such as a capacitative and electrically activated switch as a central control element. The component can be seen at Bayer MaterialScience's stand at the K 2010 plastics fair in Düsseldorf.

As well as electronic elements, the light "function" can also be integrated into appropriate 3D film components using the film insert molding (FIM) process. Conventional technologies with LEDs can also be used as a light source, and so too can large-area electroluminescent systems. In conjunction with Add-Vision Inc., for example, Bayer MaterialScience is currently working on printing flexible, polymer organic LEDs onto polycarbonate films. A bright future is forecast for these P-OLEDs in areas producing displays, for instance.

Conductive nano inks for flexible circuits

Bayer MaterialScience develops conductive nano inks for use in areas such as printed polymer electronics under the BayInk® name. These can be applied digitally using conventional printing technology such as the ink-jet method. Depending on the process, it is possible to apply line widths with a resolution of less than 30 micrometers that are no longer visible to the human eye. This enables conductor tracks, contacts and electrodes to be applied much more easily and effectively than with conventional methods, which are mostly more complicated and more energy- and material-intensive. The inks adhere to a very wide range of plastic films such as Makrofol® and Bayfol® and other flexible materials, as well as to rigid substrates. The range of applications is wide - for example, as invisible conductor tracks they can be used to simplify the complex design of touchscreens.

Customized service along the entire process chain

"Our development partners benefit from the fact that our Technical Service Center for Films is equipped with state-of-the-art machinery and equipment covering every stage of the FIM process chain for producing printed polymer electronics," says Pophusen. For example, the Functional Films unit employs fully automatic screen printing systems, rapid prototyping and high-pressure forming (HPF) units that allow printed films to be thermoformed with minimal distortion. These systems have recently been joined by an HPF machine that can handle much larger film formats measuring up to 500 x 1,000 millimeters. The FIM process chain is rounded off by injection and injection-compression molding machines of various sizes that are equipped with the relevant facilities for film processing.

####

About Bayer MaterialScience
With 2009 sales of EUR 7.5 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2009, Bayer MaterialScience had 30 production sites and employed approximately 14,300 people around the globe. Bayer MaterialScience is a Bayer Group company.

For more information, please click here

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Thin films

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Sensors

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project