Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > 'Molecular Rollar Coaster' distinguishes between molecules

The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)
The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)

Abstract:
Research that made it to the cover of the authoritative scientific journal Analytical Chemistry this week has shown that the detection method developed by researchers at the University of Twente's research institutes MESA+ and MIRA is even more sensitive than demonstrated earlier. Not only can it detect molecules accurately, it also shows the difference between them very clearly. The research was co-financed by Nanoned (a national nanotechnology R&D initiative that combines the Dutch strengths in nanoscience and technology in a national network), the Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO).

'Molecular Rollar Coaster' distinguishes between molecules

The Netherlands | Posted on September 15th, 2010

The molecules in a solution can be measured with a technology known as Coherent Anti-Stokes Raman Spectroscopy (CARS). Molecules that are very similar are, however, difficult to distinguish from one another. University of Twente (UT) researchers had, at an earlier stage, already introduced an improved form of CARS, which is much more sensitive and with which molecules can be tracked down in a very much lower concentration. In the study now published, they show that their method is not only much more sensitive, but that it also enables them to detect up to ten different sorts of molecules simultaneously. In the past, several successive measurements had to be carried out to achieve this, so work of this kind can now be carried out considerably faster. This technology also makes it possible for researchers to 'film' how medicines are released from a tablet or how a living cell burns fats. The researchers envisage applications in the pharmaceutical industry and cell biology research for this technology.

Molecular roller coaster

If you shine laser light on molecules, some of these molecules will absorb photons (light particles) and emit new photons. The emitted photons then have a higher energy level than the original photons. With the aid of Anti-Stokes Raman Spectroscopy, these photons can be caught and used to determine which molecules are present in the solution. The method looks at the amplitude of the vibrations of the light. The UT researchers' new method looks not only at the amplitude of the vibration, but also at the phase. Plotting the amplitude and the phase of the vibration of the light in a graph creates a complicated spiral dubbed the 'molecular roller coaster' by the researchers. As a result of this roller coaster, similar substances can easily be distinguished from one another.

This research was carried out by the research groups Optical Sciences (MESA+ Institute for Nanotechnology) and Medical Cell BioPhysics (MIRA) and was co-financed by Nanoned, FOM and NWO. For more information or a digital version of the article 'Visualizing Resonances in the Complex Plane with Vibrational Phase Contrast Coherent Anti-Stokes Raman Scattering' by Martin Jurna, Erik Garbacik, Jeroen Korterik, Jennifer Herek, Cees Otto and Herman Offerhaus, please contact the research information officer Joost Bruysters on +31 (0)53 489 2773 / +31 (0)6 1048 8228.

####

For more information, please click here

Contacts:
Joost Bruysters
+31 (0)53 489 2773
+31 (0)6 1048 8228

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Possible Futures

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Nanomedicine

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Tools

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Tracing barnacle's footprint August 19th, 2016

XEI Scientific celebrates its Silver Anniversary August 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic