Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Molecular Rollar Coaster' distinguishes between molecules

The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)
The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)

Abstract:
Research that made it to the cover of the authoritative scientific journal Analytical Chemistry this week has shown that the detection method developed by researchers at the University of Twente's research institutes MESA+ and MIRA is even more sensitive than demonstrated earlier. Not only can it detect molecules accurately, it also shows the difference between them very clearly. The research was co-financed by Nanoned (a national nanotechnology R&D initiative that combines the Dutch strengths in nanoscience and technology in a national network), the Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO).

'Molecular Rollar Coaster' distinguishes between molecules

The Netherlands | Posted on September 15th, 2010

The molecules in a solution can be measured with a technology known as Coherent Anti-Stokes Raman Spectroscopy (CARS). Molecules that are very similar are, however, difficult to distinguish from one another. University of Twente (UT) researchers had, at an earlier stage, already introduced an improved form of CARS, which is much more sensitive and with which molecules can be tracked down in a very much lower concentration. In the study now published, they show that their method is not only much more sensitive, but that it also enables them to detect up to ten different sorts of molecules simultaneously. In the past, several successive measurements had to be carried out to achieve this, so work of this kind can now be carried out considerably faster. This technology also makes it possible for researchers to 'film' how medicines are released from a tablet or how a living cell burns fats. The researchers envisage applications in the pharmaceutical industry and cell biology research for this technology.

Molecular roller coaster

If you shine laser light on molecules, some of these molecules will absorb photons (light particles) and emit new photons. The emitted photons then have a higher energy level than the original photons. With the aid of Anti-Stokes Raman Spectroscopy, these photons can be caught and used to determine which molecules are present in the solution. The method looks at the amplitude of the vibrations of the light. The UT researchers' new method looks not only at the amplitude of the vibration, but also at the phase. Plotting the amplitude and the phase of the vibration of the light in a graph creates a complicated spiral dubbed the 'molecular roller coaster' by the researchers. As a result of this roller coaster, similar substances can easily be distinguished from one another.

This research was carried out by the research groups Optical Sciences (MESA+ Institute for Nanotechnology) and Medical Cell BioPhysics (MIRA) and was co-financed by Nanoned, FOM and NWO. For more information or a digital version of the article 'Visualizing Resonances in the Complex Plane with Vibrational Phase Contrast Coherent Anti-Stokes Raman Scattering' by Martin Jurna, Erik Garbacik, Jeroen Korterik, Jennifer Herek, Cees Otto and Herman Offerhaus, please contact the research information officer Joost Bruysters on +31 (0)53 489 2773 / +31 (0)6 1048 8228.

####

For more information, please click here

Contacts:
Joost Bruysters
+31 (0)53 489 2773
+31 (0)6 1048 8228

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project