Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Molecular Rollar Coaster' distinguishes between molecules

The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)
The 'molecular roller coaster' of two molecules (illustration: Florian Sterl)

Abstract:
Research that made it to the cover of the authoritative scientific journal Analytical Chemistry this week has shown that the detection method developed by researchers at the University of Twente's research institutes MESA+ and MIRA is even more sensitive than demonstrated earlier. Not only can it detect molecules accurately, it also shows the difference between them very clearly. The research was co-financed by Nanoned (a national nanotechnology R&D initiative that combines the Dutch strengths in nanoscience and technology in a national network), the Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO).

'Molecular Rollar Coaster' distinguishes between molecules

The Netherlands | Posted on September 15th, 2010

The molecules in a solution can be measured with a technology known as Coherent Anti-Stokes Raman Spectroscopy (CARS). Molecules that are very similar are, however, difficult to distinguish from one another. University of Twente (UT) researchers had, at an earlier stage, already introduced an improved form of CARS, which is much more sensitive and with which molecules can be tracked down in a very much lower concentration. In the study now published, they show that their method is not only much more sensitive, but that it also enables them to detect up to ten different sorts of molecules simultaneously. In the past, several successive measurements had to be carried out to achieve this, so work of this kind can now be carried out considerably faster. This technology also makes it possible for researchers to 'film' how medicines are released from a tablet or how a living cell burns fats. The researchers envisage applications in the pharmaceutical industry and cell biology research for this technology.

Molecular roller coaster

If you shine laser light on molecules, some of these molecules will absorb photons (light particles) and emit new photons. The emitted photons then have a higher energy level than the original photons. With the aid of Anti-Stokes Raman Spectroscopy, these photons can be caught and used to determine which molecules are present in the solution. The method looks at the amplitude of the vibrations of the light. The UT researchers' new method looks not only at the amplitude of the vibration, but also at the phase. Plotting the amplitude and the phase of the vibration of the light in a graph creates a complicated spiral dubbed the 'molecular roller coaster' by the researchers. As a result of this roller coaster, similar substances can easily be distinguished from one another.

This research was carried out by the research groups Optical Sciences (MESA+ Institute for Nanotechnology) and Medical Cell BioPhysics (MIRA) and was co-financed by Nanoned, FOM and NWO. For more information or a digital version of the article 'Visualizing Resonances in the Complex Plane with Vibrational Phase Contrast Coherent Anti-Stokes Raman Scattering' by Martin Jurna, Erik Garbacik, Jeroen Korterik, Jennifer Herek, Cees Otto and Herman Offerhaus, please contact the research information officer Joost Bruysters on +31 (0)53 489 2773 / +31 (0)6 1048 8228.

####

For more information, please click here

Contacts:
Joost Bruysters
+31 (0)53 489 2773
+31 (0)6 1048 8228

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project