Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sniffer Dog on a Chip

Dog on a chip: Explosives can be detected with unprecedented sensitivity by using arrays of silicon nanowire field-effect transistors modified with an electron-rich aminosilane monolayer, which form complexes with the analytes (see picture). These “nanosniffers” can be used to sense the presence of TNT at concentrations as low as 1×10−6 ppt, which is superior to that of sniffer dogs or any other known explosive detection method.
Dog on a chip: Explosives can be detected with unprecedented sensitivity by using arrays of silicon nanowire field-effect transistors modified with an electron-rich aminosilane monolayer, which form complexes with the analytes (see picture). These “nanosniffers” can be used to sense the presence of TNT at concentrations as low as 1×10−6 ppt, which is superior to that of sniffer dogs or any other known explosive detection method.

Abstract:
Highly sensitive TNT detection with nanowires

Sniffer Dog on a Chip

Weinheim, Germany | Posted on September 15th, 2010

To thwart possible terrorist attacks and to detect contamination on sites of former military installations, researchers have been concentrating their efforts in recent years on methods for the detection and analysis of explosives. Fernando Patolsky and his team at the University of Tel Aviv have now developed a novel sensor chip that detects trinitrotoluene (TNT), as well as other explosive species, with high sensitivity and without a concentration step. As the Israeli researchers report in the journal Angewandte Chemie, their detector is superior to sniffer dogs and all other previous detection methods for this explosive.

The difficulty with the detection of explosives such as TNT is their extremely low volatility. Methods available for the analysis of air samples are expensive and time-consuming, and require large, bulky instruments, laborious sample preparation, and expert handling. "There is a need for an inexpensive, miniaturizable method that allows for quick, easy, and robust high-throughput analysis in the field," says Patolsky.

The scientists built their sensor using the principle of a nanoscale field-effect transistor. In contrast to a current-controlled classical transistor, a field-effect transistor is switched by means of an electric field. At the core of the device are nanowires made of the semiconductor silicon. These were coated with a molecular layer made from special silicon compounds that contains amino groups (NH2). TNT molecules bind to these amino groups in the form of charge-transfer complexes. The binding process involves the transfer of electrons from the electron-rich amino groups to the electron-poor TNT. This change in the charge distribution on the surface of the nanowires modulates the electric field and leads to an abrupt change in the conductivity of the nanowires, which is easily measured.

To improve the signal-to-noise ratio and thus increase the sensitivity, the scientists equipped their chip with an array of about 200 individual sensors. "We are thus able to analyze liquid and gaseous samples without prior concentration or other sample preparation at previously unattainable sensitivities," says Patolsky. "We were able to analyze concentrations down to 0.1 ppt (parts per trillion); that is, one molecule of TNT in 10 quadrillion other molecules." The sensor can be quickly regenerated by washing and is selective for TNT; other related molecules do not react the same way.

"We are now creating a chip based on large arrays of nanosensors chemically modified with a large number of chemical receptors, with different binding capabilities, in order to detect a whole spectrum of explosive species in parallel," says Patolsky.

Author: Fernando Patolsky, Tel Aviv University (Israel), www.tau.ac.il/chemistry/patolsky/

Title: Supersensitive Detection of Explosives by Silicon Nanowire Arrays

Angewandte Chemie International Edition 2010, 49, No. 38, 6830-6835, Permalink to the article: dx.doi.org/10.1002/anie.201000847

####

For more information, please click here

Contacts:

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Possible Futures

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Sensors

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Scientists Use Nanotechnology to Detect Molecular Biomarker for Osteoarthritis March 13th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Military

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project