Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sniffer Dog on a Chip

Dog on a chip: Explosives can be detected with unprecedented sensitivity by using arrays of silicon nanowire field-effect transistors modified with an electron-rich aminosilane monolayer, which form complexes with the analytes (see picture). These “nanosniffers” can be used to sense the presence of TNT at concentrations as low as 1×10−6 ppt, which is superior to that of sniffer dogs or any other known explosive detection method.
Dog on a chip: Explosives can be detected with unprecedented sensitivity by using arrays of silicon nanowire field-effect transistors modified with an electron-rich aminosilane monolayer, which form complexes with the analytes (see picture). These “nanosniffers” can be used to sense the presence of TNT at concentrations as low as 1×10−6 ppt, which is superior to that of sniffer dogs or any other known explosive detection method.

Abstract:
Highly sensitive TNT detection with nanowires

Sniffer Dog on a Chip

Weinheim, Germany | Posted on September 15th, 2010

To thwart possible terrorist attacks and to detect contamination on sites of former military installations, researchers have been concentrating their efforts in recent years on methods for the detection and analysis of explosives. Fernando Patolsky and his team at the University of Tel Aviv have now developed a novel sensor chip that detects trinitrotoluene (TNT), as well as other explosive species, with high sensitivity and without a concentration step. As the Israeli researchers report in the journal Angewandte Chemie, their detector is superior to sniffer dogs and all other previous detection methods for this explosive.

The difficulty with the detection of explosives such as TNT is their extremely low volatility. Methods available for the analysis of air samples are expensive and time-consuming, and require large, bulky instruments, laborious sample preparation, and expert handling. "There is a need for an inexpensive, miniaturizable method that allows for quick, easy, and robust high-throughput analysis in the field," says Patolsky.

The scientists built their sensor using the principle of a nanoscale field-effect transistor. In contrast to a current-controlled classical transistor, a field-effect transistor is switched by means of an electric field. At the core of the device are nanowires made of the semiconductor silicon. These were coated with a molecular layer made from special silicon compounds that contains amino groups (NH2). TNT molecules bind to these amino groups in the form of charge-transfer complexes. The binding process involves the transfer of electrons from the electron-rich amino groups to the electron-poor TNT. This change in the charge distribution on the surface of the nanowires modulates the electric field and leads to an abrupt change in the conductivity of the nanowires, which is easily measured.

To improve the signal-to-noise ratio and thus increase the sensitivity, the scientists equipped their chip with an array of about 200 individual sensors. "We are thus able to analyze liquid and gaseous samples without prior concentration or other sample preparation at previously unattainable sensitivities," says Patolsky. "We were able to analyze concentrations down to 0.1 ppt (parts per trillion); that is, one molecule of TNT in 10 quadrillion other molecules." The sensor can be quickly regenerated by washing and is selective for TNT; other related molecules do not react the same way.

"We are now creating a chip based on large arrays of nanosensors chemically modified with a large number of chemical receptors, with different binding capabilities, in order to detect a whole spectrum of explosive species in parallel," says Patolsky.

Author: Fernando Patolsky, Tel Aviv University (Israel), www.tau.ac.il/chemistry/patolsky/

Title: Supersensitive Detection of Explosives by Silicon Nanowire Arrays

Angewandte Chemie International Edition 2010, 49, No. 38, 6830-6835, Permalink to the article: dx.doi.org/10.1002/anie.201000847

####

For more information, please click here

Contacts:

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project