Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Platinum and Light together Fight Cancer

Activating platinum with light: An inert platinum(IV) diazido complex trans, trans,trans-[Pt(N3)2(OH)2(py)2] becomes potently cytotoxic to cancer cells when activated by low doses of visible light.
Activating platinum with light: An inert platinum(IV) diazido complex trans, trans,trans-[Pt(N3)2(OH)2(py)2] becomes potently cytotoxic to cancer cells when activated by low doses of visible light.

Abstract:
For tumor treatment with few side effects: platinum complex initiates cytotoxic effect upon targeted irradiation with visible light

Platinum and Light together Fight Cancer

Weinheim, Germany | Posted on September 14th, 2010

Researchers continue to search for cancer treatments that effectively destroy tumor cells while protecting surrounding healthy tissue and the body. One intriguing approach involves photoactivated drugs: an inactive precursor would be administered, then the diseased tissue could be irradiated to convert the drug into its cytotoxic form locally. Peter J. Sadler and his co-workers at the Universities of Warwick and Edinburgh, as well as the Ninewells Hospital in Dundee, have developed a new platinum complex that is suitable for this approach. As the British researchers report in the journal Angewandte Chemie, this new drug was demonstrably superior to conventional cisplatin.

The challenge in the production of photactivated cystostatic drugs is that the inactive form must be thermally stable and must reach its target areas, such as the DNA of diseased cells, intact prior to irradiation. Such compounds must thus be resistant to reactive biomolecules like the reductant glutathione, which is present at high concentrations in all cells. "Another challenge lies in controlling the wavelength of light used to activate the drug," says Sadler. "The wavelength determines how far into the irradiated tissue the light can travel. Longer wavelengths go in farther than shorter ones."

Platinum complexes are proven antitumor agents. Cisplatin is one prominent example. However, platinum drugs have significant side effects. Sadler and his co-workers hope that these can be reduced through the use of photoactivated platinum drugs. To achieve this they have developed a new platinum complex that contains two azido (N3), two hydroxy (OH), and two pyridine ligands. In its inactive form, the complex demonstrates the required stability, even toward reactive biomolecules. "The special thing about our complex is that is not only activated by UV light," reports Sadler, "but also by low doses of blue or green light." Light activation generates a powerful cytotoxic compound that has proven to be significantly more effective than cisplatin against a whole series of cancer cells tested. Says Sadler: "The mechanism by which this drug works is clearly different from cisplatin. This is likely due to the two pyridine ligands that remain bound to the platinum after photoactivation."

"We hope that photoactivated platinum complexes will make it possible to treat cancers that have previously not reacted to chemotherapy with platinum complexes," says Sadler. "Tumors that have developed resistance to conventional platinum drugs could respond to these complexes."

Author: Peter J. Sadler, University of Warwick (UK),

www2.warwick.ac.uk/fac/sci/chemistry/research/chemicalbiology/sadler/sadlergroup/people/sadler/

Title: A Potent Trans-Diimine Platinum Anticancer Complex Photoactivated by Visible Light

Angewandte Chemie International Edition, Permalink to the article:dx.doi.org/10.1002/anie.201003399

####

For more information, please click here

Contacts:
Editorial office:

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE