Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Forcing mismatched elements together could yield better solar cells

Abstract:
In what could be a step toward higher efficiency solar cells, an international team including University of Michigan professors has invalidated the most commonly used model to explain the behavior of a unique class of materials called highly mismatched alloys.

Forcing mismatched elements together could yield better solar cells

Ann Arbor, MI | Posted on September 10th, 2010

U-M professors from the departments of Materials Science and Engineering, and Physics contributed to this research.

Highly mismatched alloys, which are still in the experimental stages of development, are combinations of elements that won't naturally mix together using conventional crystal growth techniques. Professor Rachel Goldman compares them to some extent to homogenized milk, in which the high-fat cream and low-fat milk that would naturally separate are forced to mix together at high pressure.

New mixing methods such as "molecular beam epitaxy" are allowing researchers to combine disparate elements. The results, Goldman says, are more dramatic than smooth milk.

"Highly mismatched alloys have very unusual properties," said Goldman, a professor in the departments of Materials Science and Engineering, and Physics. "You can add just a sprinkle of one element and drastically change the electrical and optical properties of the alloy."

Solar cells convert energy from the sun into electricity by absorbing light. However, different materials absorb light at different wavelengths. The most efficient solar cells are made of multiple materials that together can capture a greater portion of the electromagnetic radiation in sunlight. The best solar cells today are still missing a material that can make use of a portion of the sun's infrared light.

Goldman's team made samples of gallium arsenide nitride, a highly mismatched alloy that is spiked with nitrogen, which can tap into that underutilized infrared radiation.

The researchers used molecular beam epitaxy to coax the nitrogen to mix with their other elements. Molecular beam epitaxy involves vaporizing pure samples of the mismatched elements and combining them in a vacuum.

Next, the researchers measured the alloy's ability to convert heat into electricity. They wanted to determine whether its 10 parts per million of nitrogen were distributed as individual atoms or as clusters. They found that in some cases, the nitrogen atoms had grouped together, contrary to what the prevailing "band anti-crossing" model predicted.

"We've shown experimentally that the band anti-crossing model is too simple to explain the electronic properties of highly mismatched alloys," Goldman said. "It does not quantitatively explain several of their extraordinary optical and electronic properties. Atomic clusters have a significant impact on the electronic properties of alloy films."

If researchers can learn to control the formation of these clusters, they could build materials that are more efficient at converting light and heat into electricity, Goldman said.

"The availability of higher efficiency thermoelectrics would make it more practical to generate electricity from waste heat such as that produced in power plants and car engines," Goldman said.

This research will be published in the Sept. 15 issue of Physical Review B. The paper is entitled "Nitrogen composition dependence of electron effective mass in gallium arsenide nitride." Authors include Goldman, as well as Cagliyan Kurdak, an associate professor in the Department of Physics, and Ctirad Uher, a professor in the Department of Physics.

This research was conducted in laboratories of the Center for Solar and Thermal Energy Conversion (CSTEC), a Department of Energy Energy Frontiers Research Center at the University of Michigan. The research was funded by the National Science Foundation, the Science Foundation Ireland, and CSTEC.

####

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Environment

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Iran Designs Magnetic Nano-Absorbents Cleaning Chemical Pollutants January 11th, 2015

Cheap asphalt provides 'green' carbon capture: Rice University chemists' product aims to enhance natural gas production at sea January 7th, 2015

Energy

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Research partnerships

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Gold nanoparticles show promise for early detection of heart attacks: NYU School of Engineering Professors collaborate with researchers from Peking University on a new test strip January 15th, 2015

Solar/Photovoltaic

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE