Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Forcing mismatched elements together could yield better solar cells

Abstract:
In what could be a step toward higher efficiency solar cells, an international team including University of Michigan professors has invalidated the most commonly used model to explain the behavior of a unique class of materials called highly mismatched alloys.

Forcing mismatched elements together could yield better solar cells

Ann Arbor, MI | Posted on September 10th, 2010

U-M professors from the departments of Materials Science and Engineering, and Physics contributed to this research.

Highly mismatched alloys, which are still in the experimental stages of development, are combinations of elements that won't naturally mix together using conventional crystal growth techniques. Professor Rachel Goldman compares them to some extent to homogenized milk, in which the high-fat cream and low-fat milk that would naturally separate are forced to mix together at high pressure.

New mixing methods such as "molecular beam epitaxy" are allowing researchers to combine disparate elements. The results, Goldman says, are more dramatic than smooth milk.

"Highly mismatched alloys have very unusual properties," said Goldman, a professor in the departments of Materials Science and Engineering, and Physics. "You can add just a sprinkle of one element and drastically change the electrical and optical properties of the alloy."

Solar cells convert energy from the sun into electricity by absorbing light. However, different materials absorb light at different wavelengths. The most efficient solar cells are made of multiple materials that together can capture a greater portion of the electromagnetic radiation in sunlight. The best solar cells today are still missing a material that can make use of a portion of the sun's infrared light.

Goldman's team made samples of gallium arsenide nitride, a highly mismatched alloy that is spiked with nitrogen, which can tap into that underutilized infrared radiation.

The researchers used molecular beam epitaxy to coax the nitrogen to mix with their other elements. Molecular beam epitaxy involves vaporizing pure samples of the mismatched elements and combining them in a vacuum.

Next, the researchers measured the alloy's ability to convert heat into electricity. They wanted to determine whether its 10 parts per million of nitrogen were distributed as individual atoms or as clusters. They found that in some cases, the nitrogen atoms had grouped together, contrary to what the prevailing "band anti-crossing" model predicted.

"We've shown experimentally that the band anti-crossing model is too simple to explain the electronic properties of highly mismatched alloys," Goldman said. "It does not quantitatively explain several of their extraordinary optical and electronic properties. Atomic clusters have a significant impact on the electronic properties of alloy films."

If researchers can learn to control the formation of these clusters, they could build materials that are more efficient at converting light and heat into electricity, Goldman said.

"The availability of higher efficiency thermoelectrics would make it more practical to generate electricity from waste heat such as that produced in power plants and car engines," Goldman said.

This research will be published in the Sept. 15 issue of Physical Review B. The paper is entitled "Nitrogen composition dependence of electron effective mass in gallium arsenide nitride." Authors include Goldman, as well as Cagliyan Kurdak, an associate professor in the Department of Physics, and Ctirad Uher, a professor in the Department of Physics.

This research was conducted in laboratories of the Center for Solar and Thermal Energy Conversion (CSTEC), a Department of Energy Energy Frontiers Research Center at the University of Michigan. The research was funded by the National Science Foundation, the Science Foundation Ireland, and CSTEC.

####

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Possible Futures

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Materials/Metamaterials

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project