Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Forcing mismatched elements together could yield better solar cells

Abstract:
In what could be a step toward higher efficiency solar cells, an international team including University of Michigan professors has invalidated the most commonly used model to explain the behavior of a unique class of materials called highly mismatched alloys.

Forcing mismatched elements together could yield better solar cells

Ann Arbor, MI | Posted on September 10th, 2010

U-M professors from the departments of Materials Science and Engineering, and Physics contributed to this research.

Highly mismatched alloys, which are still in the experimental stages of development, are combinations of elements that won't naturally mix together using conventional crystal growth techniques. Professor Rachel Goldman compares them to some extent to homogenized milk, in which the high-fat cream and low-fat milk that would naturally separate are forced to mix together at high pressure.

New mixing methods such as "molecular beam epitaxy" are allowing researchers to combine disparate elements. The results, Goldman says, are more dramatic than smooth milk.

"Highly mismatched alloys have very unusual properties," said Goldman, a professor in the departments of Materials Science and Engineering, and Physics. "You can add just a sprinkle of one element and drastically change the electrical and optical properties of the alloy."

Solar cells convert energy from the sun into electricity by absorbing light. However, different materials absorb light at different wavelengths. The most efficient solar cells are made of multiple materials that together can capture a greater portion of the electromagnetic radiation in sunlight. The best solar cells today are still missing a material that can make use of a portion of the sun's infrared light.

Goldman's team made samples of gallium arsenide nitride, a highly mismatched alloy that is spiked with nitrogen, which can tap into that underutilized infrared radiation.

The researchers used molecular beam epitaxy to coax the nitrogen to mix with their other elements. Molecular beam epitaxy involves vaporizing pure samples of the mismatched elements and combining them in a vacuum.

Next, the researchers measured the alloy's ability to convert heat into electricity. They wanted to determine whether its 10 parts per million of nitrogen were distributed as individual atoms or as clusters. They found that in some cases, the nitrogen atoms had grouped together, contrary to what the prevailing "band anti-crossing" model predicted.

"We've shown experimentally that the band anti-crossing model is too simple to explain the electronic properties of highly mismatched alloys," Goldman said. "It does not quantitatively explain several of their extraordinary optical and electronic properties. Atomic clusters have a significant impact on the electronic properties of alloy films."

If researchers can learn to control the formation of these clusters, they could build materials that are more efficient at converting light and heat into electricity, Goldman said.

"The availability of higher efficiency thermoelectrics would make it more practical to generate electricity from waste heat such as that produced in power plants and car engines," Goldman said.

This research will be published in the Sept. 15 issue of Physical Review B. The paper is entitled "Nitrogen composition dependence of electron effective mass in gallium arsenide nitride." Authors include Goldman, as well as Cagliyan Kurdak, an associate professor in the Department of Physics, and Ctirad Uher, a professor in the Department of Physics.

This research was conducted in laboratories of the Center for Solar and Thermal Energy Conversion (CSTEC), a Department of Energy Energy Frontiers Research Center at the University of Michigan. The research was funded by the National Science Foundation, the Science Foundation Ireland, and CSTEC.

####

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Materials/Metamaterials

Electron spin brings order to high entropy alloys April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Announcements

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Environment

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Research partnerships

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project