Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > MIT scientists observe single ions moving through tiny carbon-nanotube channel

MIT chemical engineers built tiny channels out of carbon nanotubes — hollow tubes whose walls are made of lattices of carbon atoms. Small molecules such as sodium ions and protons can flow through the channels.  Graphic: Patrick Gillooly
MIT chemical engineers built tiny channels out of carbon nanotubes — hollow tubes whose walls are made of lattices of carbon atoms. Small molecules such as sodium ions and protons can flow through the channels. Graphic: Patrick Gillooly

Abstract:
Channels could be used for sensitive detectors or water-desalination systems

By Anne Trafton, MIT News Office

MIT scientists observe single ions moving through tiny carbon-nanotube channel

Cambridge, MA | Posted on September 10th, 2010

For the first time, a team of MIT chemical engineers has observed single ions marching through a tiny carbon-nanotube channel. Such channels could be used as extremely sensitive detectors or as part of a new water-desalination system. They could also allow scientists to study chemical reactions at the single-molecule level.

Carbon nanotubes — tiny, hollow cylinders whose walls are lattices of carbon atoms — are about 10,000 times thinner than a human hair. Since their discovery nearly 20 years ago, researchers have experimented with them as batteries, transistors, sensors and solar cells, among other applications.

In the Sept. 10 issue of Science, MIT researchers report that charged molecules, such as the sodium and chloride ions that form when salt is dissolved in water, can not only flow rapidly through carbon nanotubes, but also can, under some conditions, do so one at a time, like people taking turns crossing a bridge. The research was led by associate professor Michael Strano.

The new system allows passage of much smaller molecules, over greater distances (up to half a millimeter), than any existing nanochannel. Currently, the most commonly studied nanochannel is a silicon nanopore, made by drilling a hole through a silicon membrane. However, these channels are much shorter than the new nanotube channels (the nanotubes are about 20,000 times longer), so they only permit passage of large molecules such as DNA or polymers — anything smaller would move too quickly to be detected.

Strano and his co-authors — recent PhD recipient Chang Young Lee, graduate student Wonjoon Choi and postdoctoral associate Jae-Hee Han — built their new nanochannel by growing a nanotube across a one-centimeter-by-one-centimeter plate, connecting two water reservoirs. Each reservoir contains an electrode, one positive and one negative. Because electricity can flow only if protons — positively charged hydrogen ions, which make up the electric current — can travel from one electrode to the other, the researchers can easily determine whether ions are traveling through the nanotube.

They found that protons do flow steadily across the nanotube, carrying an electric current. Protons flow easily through the nanochannel because they are so small, but the researchers observed that other positively charged ions, such as sodium, can also get through but only if enough electric field is applied. Sodium ions are much larger than protons, so they take longer to cross once they enter. While they travel across the channel, they block protons from flowing, leading to a brief disruption in current known as the Coulter effect.

Strano believes that the channels allow only positively charged ions to flow through them because the ends of the tubes contain negative charges, which attract positive ions. However, he plans to build channels that attract negative ions by adding positive charges to the tube.

Once the researchers have these two types of channels, they hope to embed them in a membrane that could also be used for water desalination. More than 97 percent of Earth's water is in the oceans, but that vast reservoir is undrinkable unless the salt is removed. The current desalination methods, distillation and reverse osmosis, are expensive and require lots of energy. So a nanotube membrane that allows both sodium and chloride ions (which are negatively charged) to flow out of seawater could become a cheaper way to desalinate water.

This study marks the first time that individual ions dissolved in water have been observed at room temperature. This means the nanochannels could also detect impurities, such as arsenic or mercury, in drinking water. (Ions can be identified by how long it takes them to cross the channel, which depends on their size). "If a single arsenic ion is floating in solution, you could detect it," says Strano.

Source: "Coherence Resonance in a Single Walled Carbon Nanotube Ion Channel" by Chang Young Lee, Wonjoon Choi, Jae-Hee Han, and Michael S. Strano. Science, 9 September, 2010.

Funding: Institute for Soldier Nanotechnology at MIT, U.S. Army Research Office, and a fellowship from the Sloan Foundation

####

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office

T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Chemistry

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Water

Unraveling the light of fireflies December 17th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Iranian Scientists Refine Wastewater of Nuclear Power Plants Using Nanoparticles December 1st, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE