Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT scientists observe single ions moving through tiny carbon-nanotube channel

MIT chemical engineers built tiny channels out of carbon nanotubes — hollow tubes whose walls are made of lattices of carbon atoms. Small molecules such as sodium ions and protons can flow through the channels.  Graphic: Patrick Gillooly
MIT chemical engineers built tiny channels out of carbon nanotubes — hollow tubes whose walls are made of lattices of carbon atoms. Small molecules such as sodium ions and protons can flow through the channels. Graphic: Patrick Gillooly

Abstract:
Channels could be used for sensitive detectors or water-desalination systems

By Anne Trafton, MIT News Office

MIT scientists observe single ions moving through tiny carbon-nanotube channel

Cambridge, MA | Posted on September 10th, 2010

For the first time, a team of MIT chemical engineers has observed single ions marching through a tiny carbon-nanotube channel. Such channels could be used as extremely sensitive detectors or as part of a new water-desalination system. They could also allow scientists to study chemical reactions at the single-molecule level.

Carbon nanotubes — tiny, hollow cylinders whose walls are lattices of carbon atoms — are about 10,000 times thinner than a human hair. Since their discovery nearly 20 years ago, researchers have experimented with them as batteries, transistors, sensors and solar cells, among other applications.

In the Sept. 10 issue of Science, MIT researchers report that charged molecules, such as the sodium and chloride ions that form when salt is dissolved in water, can not only flow rapidly through carbon nanotubes, but also can, under some conditions, do so one at a time, like people taking turns crossing a bridge. The research was led by associate professor Michael Strano.

The new system allows passage of much smaller molecules, over greater distances (up to half a millimeter), than any existing nanochannel. Currently, the most commonly studied nanochannel is a silicon nanopore, made by drilling a hole through a silicon membrane. However, these channels are much shorter than the new nanotube channels (the nanotubes are about 20,000 times longer), so they only permit passage of large molecules such as DNA or polymers — anything smaller would move too quickly to be detected.

Strano and his co-authors — recent PhD recipient Chang Young Lee, graduate student Wonjoon Choi and postdoctoral associate Jae-Hee Han — built their new nanochannel by growing a nanotube across a one-centimeter-by-one-centimeter plate, connecting two water reservoirs. Each reservoir contains an electrode, one positive and one negative. Because electricity can flow only if protons — positively charged hydrogen ions, which make up the electric current — can travel from one electrode to the other, the researchers can easily determine whether ions are traveling through the nanotube.

They found that protons do flow steadily across the nanotube, carrying an electric current. Protons flow easily through the nanochannel because they are so small, but the researchers observed that other positively charged ions, such as sodium, can also get through but only if enough electric field is applied. Sodium ions are much larger than protons, so they take longer to cross once they enter. While they travel across the channel, they block protons from flowing, leading to a brief disruption in current known as the Coulter effect.

Strano believes that the channels allow only positively charged ions to flow through them because the ends of the tubes contain negative charges, which attract positive ions. However, he plans to build channels that attract negative ions by adding positive charges to the tube.

Once the researchers have these two types of channels, they hope to embed them in a membrane that could also be used for water desalination. More than 97 percent of Earth's water is in the oceans, but that vast reservoir is undrinkable unless the salt is removed. The current desalination methods, distillation and reverse osmosis, are expensive and require lots of energy. So a nanotube membrane that allows both sodium and chloride ions (which are negatively charged) to flow out of seawater could become a cheaper way to desalinate water.

This study marks the first time that individual ions dissolved in water have been observed at room temperature. This means the nanochannels could also detect impurities, such as arsenic or mercury, in drinking water. (Ions can be identified by how long it takes them to cross the channel, which depends on their size). "If a single arsenic ion is floating in solution, you could detect it," says Strano.

Source: "Coherence Resonance in a Single Walled Carbon Nanotube Ion Channel" by Chang Young Lee, Wonjoon Choi, Jae-Hee Han, and Michael S. Strano. Science, 9 September, 2010.

Funding: Institute for Soldier Nanotechnology at MIT, U.S. Army Research Office, and a fellowship from the Sloan Foundation

####

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office

T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Chemistry

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Possible Futures

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Water

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project