Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular "propellers" may rotate very slowly

Abstract:
The experiments conducted in the Institute of Physical Chemistry of the Polish Academy of Sciences on super-thin liquid-crystal films created on water surface allowed the surprisingly slow and continuous rotational motion of molecules, rotating "in unison", to be observed nearly with the naked eye.

Molecular "propellers" may rotate very slowly

Poland | Posted on September 9th, 2010

Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciencies (IPC PAS) established that in the liquid-crystal layers that are several nanometers thick and created on water surface, molecules may rotate with extremely low speed, just one revolution per several minutes. Such slow rotational motion is a real surprise since it was expected that rotation would be quickly destroyed by thermal fluctuations. "The slowdown in rotation of molecules is nothing unexpected in liquid crystals usually formed of thousands of layers. However, in our experiments we have monolayers and we can observe the effects of very slow rotational motion of chemical molecules nearly with the naked eye," emphasises Prof. Robert Holyst from the IPC PAS.

The experiment conducted in the IPC PAS is distantly related to famous experiments carried out by Benjamin Franklin and connected with quieting agitated water by spilling oil on it. During one of the attempts Franklin noticed that oil spilled on the surface of a pond became so thin at a certain point that it stopped spreading. "We do something similar but on a smaller scale: we spill microlitres of liquid crystal on water surface. Its molecules form a monolayer, that is a layer which is one-molecule thick," explains PhD Andrzej Zywocinski from the IPC PAS.

Molecules of the liquid crystals that are examined have amphiphilic character - the hydrophilic group of a chain attaches to water surface, over which the hydrophobic tail protrudes making dissolution impossible - and they freely move across the water surface, which means they behave like gas in two-dimensional space. However, researchers were interested in the behaviour of liquid crystals in a liquid phase. A gas may be transformed into a liquid or solid as a result of changes in temperature or pressure. If we use the latter, solidification is achieved at high pressures of at least several dozens of atmospheres. Fortunately, in the case of monolayers a suitably high pressure can be easily obtained with a device called the Langmuir balance. It is a shallow tank filled with water, with two hydrophilic barriers between which there is a film of the liquid crystal several nanometers thick. "It is sufficient to decrease the distance between the barriers in order to achieve an increase in surface pressure that will cause the liquid crystal to become liquid or even solid," says Patrycja Niton, a PhD student from the IPC PAS.

The surface of a liquid-crystal film in a liquid phase was observed with the Brewster angle microscope at relatively small enlargement. The Brewster angle is an angle at which light falling on the surface of a dielectric reflects off fully linearly polarized, which means that the component of the electric field oscillates in one plane. If a polarizer is placed in the way of such polarized light so that the light goes through it, it will stop the entire reflected light and under the Brewster angle microscope clean water will look black. However, if on the water surface there is something which twists the plane of polarization, bright reflections will appear.

In the experiments conducted in the Institute of Physical Chemistry of the PAS it was analysed how a monolayer of a ferroelectric SmC* liquid crystal behaved on water surface. It is typical for SmC* phase that molecules spontaneously arrange themselves into layers and each subsequent layer is slightly twisted in relation to the others. "We have only one layer which we can imagine to be a forest of molecules inclined in the same direction at certain angle," explains PhD Zywocinski. When water molecules evaporate, they hit into groups of atoms of various sizes which are connected with an asymmetric (chiral) carbon atom in each molecule of the liquid crystal. Due to the asymmetry, the fragments of molecules of liquid crystals protruding over the water surface act as the sails of a windmill and they start to rotate collectively (this effect was for the first time observed by Prof. Hiroshi Yokoyama from Japan). A molecule must be constructed in an appropriate way to be able to rotate. The polar group that keeps it at the water surface should not be too big as it would be immersed too deeply and would hinder the rotation caused by the asymmetric chiral group which is hit by the molecules of evaporating water. The chiral group, on the other hand, must remain distinctly above the surface.

Rotating molecules change the polarization plane of the reflected light and in the field of view of the Brewster angle microscope there are areas of periodically changing brightness. The quickest rotation of molecules observed in this way lasted five seconds and the slowest as long as eight minutes. It is probably possible to achieve even slower rotational motion but not through the decrease of temperature (as liquid crystals become solid then) but by saturating the air with water vapour, which would decrease the pace of evaporation and thus the frequency of collision of water molecules and "sails" of liquid crystals.

Slowly rotating molecules of liquid crystals can be used to construct nanodevices. "It is possible to construct a molecule in which a group of atoms playing the role of a sail would be a kind of a nanodrive. Then we would create a real molecular nanoengine driven by a water vapour stream," says PhD Zywocinski, and he adds that scientists are now working on the possibility to transfer this collective rotation of single molecules to larger objects.

The film made at the Institute of Physical Chemistry of the PAS shows water surface covered with a liquid crystal monolayer. Rotating molecules change the polarization plane of the reflected light and cause periodic changes in brightness, which are particularly well noticeable in the spiral at the bottom of the monitor. The field of view is 4.8 x 6.4 mm. (Source: IPC PAS)

ichf.edu.pl/press/2010/09/IChF100908c_mov01.avi

####

About Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories operating as part of the Institute implement, produce and commercialise specialist chemical compounds to be used, in particular, in agriculture and pharmacy. The Institute publishes approximately 300 original research papers annually.

For more information, please click here

Contacts:
Prof. Robert Hołyst
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433123


Ph.D. Andrzej Żywociński
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433247

Copyright © Polish Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Thin films

IBS report electric transport across molybdenum disulfide grain boundaries: Scientific team from CINAP/IBS identifies previously undiscovered differences in grain boundaries January 28th, 2016

Weaving a new story for COFS and MOFs: First materials to be woven at the atomic and molecular levels created at Berkeley January 24th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Flexible film may lead to phone-sized cancer detector January 18th, 2016

Possible Futures

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Molecular Machines

'Spermbots' could help women trying to conceive (video) January 15th, 2016

Scientists blueprint tiny cellular 'nanomachine' December 17th, 2015

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic