Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecular "propellers" may rotate very slowly

Abstract:
The experiments conducted in the Institute of Physical Chemistry of the Polish Academy of Sciences on super-thin liquid-crystal films created on water surface allowed the surprisingly slow and continuous rotational motion of molecules, rotating "in unison", to be observed nearly with the naked eye.

Molecular "propellers" may rotate very slowly

Poland | Posted on September 9th, 2010

Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciencies (IPC PAS) established that in the liquid-crystal layers that are several nanometers thick and created on water surface, molecules may rotate with extremely low speed, just one revolution per several minutes. Such slow rotational motion is a real surprise since it was expected that rotation would be quickly destroyed by thermal fluctuations. "The slowdown in rotation of molecules is nothing unexpected in liquid crystals usually formed of thousands of layers. However, in our experiments we have monolayers and we can observe the effects of very slow rotational motion of chemical molecules nearly with the naked eye," emphasises Prof. Robert Holyst from the IPC PAS.

The experiment conducted in the IPC PAS is distantly related to famous experiments carried out by Benjamin Franklin and connected with quieting agitated water by spilling oil on it. During one of the attempts Franklin noticed that oil spilled on the surface of a pond became so thin at a certain point that it stopped spreading. "We do something similar but on a smaller scale: we spill microlitres of liquid crystal on water surface. Its molecules form a monolayer, that is a layer which is one-molecule thick," explains PhD Andrzej Zywocinski from the IPC PAS.

Molecules of the liquid crystals that are examined have amphiphilic character - the hydrophilic group of a chain attaches to water surface, over which the hydrophobic tail protrudes making dissolution impossible - and they freely move across the water surface, which means they behave like gas in two-dimensional space. However, researchers were interested in the behaviour of liquid crystals in a liquid phase. A gas may be transformed into a liquid or solid as a result of changes in temperature or pressure. If we use the latter, solidification is achieved at high pressures of at least several dozens of atmospheres. Fortunately, in the case of monolayers a suitably high pressure can be easily obtained with a device called the Langmuir balance. It is a shallow tank filled with water, with two hydrophilic barriers between which there is a film of the liquid crystal several nanometers thick. "It is sufficient to decrease the distance between the barriers in order to achieve an increase in surface pressure that will cause the liquid crystal to become liquid or even solid," says Patrycja Niton, a PhD student from the IPC PAS.

The surface of a liquid-crystal film in a liquid phase was observed with the Brewster angle microscope at relatively small enlargement. The Brewster angle is an angle at which light falling on the surface of a dielectric reflects off fully linearly polarized, which means that the component of the electric field oscillates in one plane. If a polarizer is placed in the way of such polarized light so that the light goes through it, it will stop the entire reflected light and under the Brewster angle microscope clean water will look black. However, if on the water surface there is something which twists the plane of polarization, bright reflections will appear.

In the experiments conducted in the Institute of Physical Chemistry of the PAS it was analysed how a monolayer of a ferroelectric SmC* liquid crystal behaved on water surface. It is typical for SmC* phase that molecules spontaneously arrange themselves into layers and each subsequent layer is slightly twisted in relation to the others. "We have only one layer which we can imagine to be a forest of molecules inclined in the same direction at certain angle," explains PhD Zywocinski. When water molecules evaporate, they hit into groups of atoms of various sizes which are connected with an asymmetric (chiral) carbon atom in each molecule of the liquid crystal. Due to the asymmetry, the fragments of molecules of liquid crystals protruding over the water surface act as the sails of a windmill and they start to rotate collectively (this effect was for the first time observed by Prof. Hiroshi Yokoyama from Japan). A molecule must be constructed in an appropriate way to be able to rotate. The polar group that keeps it at the water surface should not be too big as it would be immersed too deeply and would hinder the rotation caused by the asymmetric chiral group which is hit by the molecules of evaporating water. The chiral group, on the other hand, must remain distinctly above the surface.

Rotating molecules change the polarization plane of the reflected light and in the field of view of the Brewster angle microscope there are areas of periodically changing brightness. The quickest rotation of molecules observed in this way lasted five seconds and the slowest as long as eight minutes. It is probably possible to achieve even slower rotational motion but not through the decrease of temperature (as liquid crystals become solid then) but by saturating the air with water vapour, which would decrease the pace of evaporation and thus the frequency of collision of water molecules and "sails" of liquid crystals.

Slowly rotating molecules of liquid crystals can be used to construct nanodevices. "It is possible to construct a molecule in which a group of atoms playing the role of a sail would be a kind of a nanodrive. Then we would create a real molecular nanoengine driven by a water vapour stream," says PhD Zywocinski, and he adds that scientists are now working on the possibility to transfer this collective rotation of single molecules to larger objects.

The film made at the Institute of Physical Chemistry of the PAS shows water surface covered with a liquid crystal monolayer. Rotating molecules change the polarization plane of the reflected light and cause periodic changes in brightness, which are particularly well noticeable in the spiral at the bottom of the monitor. The field of view is 4.8 x 6.4 mm. (Source: IPC PAS)

ichf.edu.pl/press/2010/09/IChF100908c_mov01.avi

####

About Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories operating as part of the Institute implement, produce and commercialise specialist chemical compounds to be used, in particular, in agriculture and pharmacy. The Institute publishes approximately 300 original research papers annually.

For more information, please click here

Contacts:
Prof. Robert Hołyst
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433123


Ph.D. Andrzej Żywociński
Institute of Physical Chemistry of the Polish Academy of Sciences
tel. +48 22 3433247

Copyright © Polish Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Thin films

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE