Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Closer Look at Ring Opening

Anfractuous paths: Electron diffraction reveals the involvement of multiple structures in the complex photochemistry of photoswitchable nitro-substituted 1,3,3-trimethylindolinobenzospiropyran. The spiropyran-to-merocyanine isomerization due to ring opening produces primarily the cis–trans–cis structure (see picture; red O, blue N, yellow C), while competing nonradiative pathways lead to other structures, namely the closed forms in their triplet and singlet ground states.
Anfractuous paths: Electron diffraction reveals the involvement of multiple structures in the complex photochemistry of photoswitchable nitro-substituted 1,3,3-trimethylindolinobenzospiropyran. The spiropyran-to-merocyanine isomerization due to ring opening produces primarily the cis–trans–cis structure (see picture; red O, blue N, yellow C), while competing nonradiative pathways lead to other structures, namely the closed forms in their triplet and singlet ground states.

Abstract:
Electron diffraction studies of photoswitchable molecules

A Closer Look at Ring Opening

Weinheim, Germany | Posted on September 9th, 2010

We use a switch to turn lights off and on; however, light can also act as a switch itself, for example when molecules change their structure upon irradiation. Photoswitchable molecules are potentially interesting for use in holographic data storage, as molecular switches for nanomachines, or for switching biological functions in the biosciences. In order to tailor these molecules for different applications, it is necessary to have a comprehensive understanding of the underlying reaction mechanisms. A team led by Nobel Laureate Ahmed Zewail and members of his group at Caltech in Pasadena (California, USA) now reports in the journal Angewandte Chemie about their use of electron diffraction studies to observe a photoswitchable molecule in the process of "switching".

The molecule under examination was a complex ring system that switches between a closed form and an open form upon irradiation with UV light. In the closed spiropyran form it consists of two planar fused ring systems that form two orthogonal planes. When irradiated, a bond is broken to open a single ring. In this open merocyanin form, both units of the molecule are only connected through a bridge made by three bonds. Each of these bonds can theoretically have one of two spatial arrangements, which are designated as cis and trans. Furthermore, this molecule contains a nitro group (-NO2), which allows it to enter into two different electronic states—singlet or triplet—when excited by light.

Which form does it choose? This is what the researches wished to determine in order to study the reaction mechanism. To do this, they used a method known as laser-desorption electron diffraction. In this technique, a sample is heated and vaporized by laser so rapidly that the sample molecules do not have time to decompose. The isolated molecules are then bombarded with electrons. The electrons are diffracted by the atomic nuclei of the molecule, which results in a characteristic diffraction pattern. The scientists recorded diffraction patterns 100 nanoseconds before and after excitation with UV.

By using theoretical model calculations, the researchers were able to interpret these diffraction patterns. The result: "Ring opening leads primarily to the cis-trans-cis structure," according to Zewail, "while competing, non-irradiative paths lead to other structures, such as the closed forms in their triplet and singlet ground states."

"Our results demonstrate the enormous capability of the electron diffraction technique to solve such complex, nanometer-scale structures with minimal symmetry," says Zewail.


Author: Ahmed H. Zewail, California Institute of Technology, Pasadena (USA), www.zewail.caltech.edu/contact/index.html

Title: Direct Determination of Conformations of Photoswitchable Molecules by Laser Desorption-Electron Diffraction

Angewandte Chemie International Edition 2010, 49, No. 37, 6524-6527, Permalink to the article: dx.doi.org/10.1002/anie.201003583

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Nanomedicine

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nanobiotechnology

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE