Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study Shows Nano-Architectured Aluminum Has Steely Strength

Abstract:
A North Carolina State University researcher and colleagues have figured out a way to make an aluminum alloy, or a mixture of aluminum and other elements, just as strong as steel.

By Mick Kulikowski

Study Shows Nano-Architectured Aluminum Has Steely Strength

Raleigh, NC | Posted on September 9th, 2010

That's important, says Dr. Yuntian Zhu, professor of materials science and the NC State researcher involved in the project, because the search for ever lighter - yet stronger - materials is crucial to devising everything from more fuel-efficient cars to safer airplanes.

In a paper published in the journal Nature Communications, Zhu and his colleagues describe the new nanoscale architecture within aluminum alloys that have unprecedented strength but also reasonable plasticity to stretch and not break under stress. Perhaps even more importantly, the technique of creating these nanostructures can be used on many different types of metals.

Zhu says the aluminum alloys have unique structural elements that, when combined to form a hierarchical structure at several nanoscale levels, make them super-strong and ductile.

The aluminum alloys have small building blocks, called "grains," that are thousands of times smaller than the width of a human hair. Each grain is a tiny crystal less than 100 nanometers in size. Bigger is not better in materials, Zhu says, as smaller grains result in stronger materials.

Zhu also says the aluminum alloys have a number of different types of crystal "defects." Nanocrystals with defects are stronger than perfect crystals.

Now, Zhu plans on working on strengthening magnesium, a metal that is even lighter than aluminum. He's collaborating with the Department of Defense on a project to make magnesium alloys strong enough to be used as body armor for soldiers.

Zhu's colleagues on the Nature Communications paper are affiliated with the University of Sydney in Australia; the University of California, Davis; and Ufa State Aviation Technical University in Russia.

The Department of Materials Science and Engineering is part of NC State's College of Engineering.

Abstract

"Nanostructural hierarchy increases the strength of aluminium alloys"


Authors: Yuntian Zhu, North Carolina State University; Peter Liddicoat, Simon P. Ringer and Xiao-Zhou Liao, University of Sydney; Yonghao Zhao and Enrique J. Lavernia, University of California, Davis; Maxim Y. Murashkin and Rusian Z. Valiev, Ufa State Aviation Technical University

Published: Sept. 7, 2010, in Nature Communications

Abstract: Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries - an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

####

Contacts:
Mick Kulikowski
News Services
919.515.8387

Dr. Yuntian Zhu
919.513.0559

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Possible Futures

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Materials/Metamaterials

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Military

Nanoscale view of energy storage January 16th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Aerospace/Space

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

New records set up with 'Screws of Light' November 20th, 2016

Keep it Clean: Leti and French Partners to Test ‘Smart’ Antibacterial Surfaces in Space: Matiss Experiment Designed to Measure Most Effective Material for Cleaning International Space Station and Is Expected to Provide Earth-bound Applications November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project