Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > To Reach, Perchance to Kill the Cancer: A Soliloquy From Epeius Nanotechnologies Opposes That 'Sea of Troubles'

Abstract:
New Publication Reveals Tumor-targeted Gene Delivery in Clinical Remission

To Reach, Perchance to Kill the Cancer: A Soliloquy From Epeius Nanotechnologies Opposes That 'Sea of Troubles'

San Marino, CA | Posted on September 8th, 2010

Epeius Biotechnologies Corporation, a leader in the emerging field of targeted genetic medicine, reports the publication of a landmark paper in clinical oncology. Following up on its advanced U.S. Phase I/II clinical trials of Rexin-G in chemo-resistant metastatic pancreatic cancer (Molecular Therapy, 2010, 18: 435-441), which gained both Orphan Drug and FDA Fast Track Status, this new paper documents the molecular mechanisms-of-action of Rexin-G seen in the process of tumor eradication—revealing the "smoking gun" of precision, tumor-targeted killer gene delivery amidst a veritable "sea" of actively dying (apoptosing) tumor cells. Equally as important was the clinical finding that surgical oncologists were able to do more for cancer patients after the metastatic disease was brought under control by Rexin-G treatment.

Based on the adaptive Phase I/II study design, which included an FDA allowance for surgical intervention to be added to the treatment protocol in cases where repeated Rexin-G infusions had served to control the cancer and halt disease progression, the report describes the use of Rexin-G as both neoadjuvant therapy (before surgery) and as adjuvant therapy (after surgery) to prevent post-surgical spread and disease recurrence. Remarkably, the excised tumor(s) showed the process of Rexin-G accumulation within the tumors, as well as the molecular mechanisms of tumor cell destruction, with an unprecedented level of histological high-definition.

The landmark paper, published in the latest issue of Oncology Reports (Open Access, 24: 829-833, 2010) demonstrates the physical accumulation of the intravenous Rexin-G nano-medicine within the metastatic tumor prior to its surgical excision. It additionally reveals the selective accumulation of the Rexin-G nanoparticles on the surfaces of the target cells, i.e., pancreatic cancer cells and their proliferative vasculature, which is a distinctive property of the tumor-targeted nanotechnology platform. Using elegant immunohistochemistry to identify the process of active cell death (apoptosis) enforced by Rexin-G, the molecular mechanisms of precision tumor-targeting and selective cell death have never been more vividly displayed. It bears mentioning that the pancreatic cancer patient highlighted in this histological study is currently in surgical remission, with no new lesions during Rexin-G treatment and no disease recurrence going on six months after the Rexin-G / Surgical Excision / Rexin-G treatment combination.

####

About Epeius Biotechnologies
Epeius Biotechnologies Corporation is a privately held biopharmaceutical company that is bringing the latest advancements in genetic medicine to the cancer patient with the development and commercialization of its leading oncology products and its tumor-targeted delivery systems. Rexin-G is currently approved for the treatment of all chemotherapy-resistant solid tumors by the Philippine FDA.

To learn more about our lead products and/or our pipeline of proprietary biotechnologies, please visit us at www.epeiusbiotech.com.

For recent papers, expert reviews, clinical reports in oncology and molecular therapy, etc., see the "Publications" section.

For more information, please click here

Copyright © PrNewswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Nanomedicine

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Nanobiotechnology

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic