Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cobalt-Controlled Communication

Abstract:
Fine Performance Tuning of an Organometallic Molecular Wire by Added Dicobalt Fragments

Cobalt-Controlled Communication

Germany | Posted on September 6th, 2010

Smaller and smarter: this is the aim of research in the quest for ever faster electronic devices smaller in size but capable of performing more complicated tasks. Devices consisting of the smallest possible components, molecular parts, have emerged as the answer. Molecular wires, the most basic components of molecular electronic circuits, need to be accurately adjusted for optimal performance. Y. Tanaka, T. Koike, and M. Akita of the Chemical Resources Laboratory, Tokyo Institute of Technology, reveal the key factor for tuning wire-like performance in the Short Communication published in the European Journal of Inorganic Chemistry.

The factors affecting the communication performance of molecular devices are important for the development of molecular electronics. Parts of molecular electronic circuits (wires, switches, resistors, diodes, etc.) must have adjustable electronic properties to optimize this communication. Akita et al. prepared a molecular wire containing a C?C moiety between two iron centers. The communication between the iron centers was modified by coordination of a dicobalt cluster to the C?C part of the wire. Fine tuning was achieved by attaching, removing, or replacing the ligands on the added cobalt system as needed, which changed the electronic properties of the Co atoms with respect to those of the Fe atoms, thus controlling the transfer of electrons between the iron centers over a path through the cobalt atoms. In contrast to the direct Fe-Fe transition mechanism for the diiron wire, the communication mechanism of the dicobalt adducts involved indirect Fe-Co-Fe electron transfer. The mixed-valence characteristics of the compounds were studied by electrochemical and spectroscopic methods. The diiron compound belongs to Robin-Day Class III, and the dicobalt adducts have properties that place them between Class IIA and IIB. All molecular wires reported in this paper can be interconverted easily in a reversible manner.

The most important contribution of this study to the understanding of fine tuning of molecular devices is the key role played by the donor properties of the ligands attached to the cobalt fragments on the path between the two communicating iron centers. It was demonstrated that the properties of electron transfer through the molecular wire could be adjusted by tailoring the electronic properties of these ligands.

Author: Munetaka Akita, Tokyo Institute of Technology, Yokohama (Japan), www.res.titech.ac.jp/~smart/A_akita_e.html

Title: Reversible, Fine Performance Tuning of an Organometallic Molecular Wire by Additi on, Ligand Replacement and Removal of Dicobalt Fragments

European Journal of Inorganic Chemistry, 2010, No. 23, 3571-3575, Permalink to the article: dx.doi.org/10.1002/ejic.201000661

####

For more information, please click here

Copyright © Wiley-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE