Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sarfus 3D-IMM: New equipement for nanometric sample charaterization in water

Abstract:
Nanolane is proud to announce the launch of its new equipment SARFUS 3D-IMM dedicated to the topographic characterization of nanometric samples in water.

Sarfus 3D-IMM: New equipement for nanometric sample charaterization in water

France | Posted on September 6th, 2010

Equipments for characterization in water are still rare, relatively complex to operate and do not offer real-time images of samples. SARFUS 3D-IMM is designed to match the needs of the engineering and research community, especially in the Life Science but also in Thin Film and Surface Treatment areas. Indeed, SARFUS 3D-IMM is dedicated to the observation of nano-objects in real-time and to the thickness measurements of ultra-thin films in water.

Like the other SARFUS products, SARFUS 3D-IMM is based on SEEC optical technique that uses specific nonreflecting surfaces for cross-polarized reflected light microscopy. These surfaces -the Surfs- are used instead of standard microscope slides and generate a contrast enhancement of about 2 orders of magnitude, extending the application fields of optical microscopy toward the nanoworld.

Thanks to the absence of scanning and its easiness of use, SARFUS 3D-IMM equipment opens new perspectives for the nano-characterization in aqueous media by allowing dynamic studies of nanometric structures and rapid quality control of samples. In addition, the equipment is proposed with a powerful 3D topographic software for complete characterization (layer thicknesses, section profiles, roughnesses...) of nanometric samples.

The main applications concerned by this innovation are:

Biological objets

- Vesicles
- Lipid bilayers
- Biochips
- Cell adhesion
- ...

Thin films & Surface Treatment

- Polyelectrolytes
- Sensitive films (LCST)
- Nano-films
- Polymer patterns
- ...

The main features of SARFUS 3D-IMM equipment are:

- User friendly & Fast processing
- Repeatability : 0.1nm (according to ISO standard 17025)
- Z-sensibility limit: 0.2nm
- Range of measurement: 1 to 60nm
- Lateral resolution : 330nm
- Live video acquisition
- Time lapse (up to 15 image per second)
- Non destructive, no labelling
- Compatibility with fluorescence

####

About éolane
éolane is the signature, of seven companies, all gathered under 100% control of a holding, the “Financière de l’Ombrée”, whose main activity is the conception, the study and the manufacture of professional electronic materials.

Each of them operates in complementary fields (technologies, industrial resource, economic sectors, and geographical areas). Strong synergies are present between them (conception, purchases, sales, industry, networks, and quality, to quote only the principal ones).

For more information, please click here

Contacts:
Nicolas Medard

Copyright © éolane

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Tools

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project