Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > QB3 researchers illuminate operation of molecular gateway to the cell nucleus

The nuclear pore complex (NPC) gates the traffic of all molecules between the cytoplasm and the nucleus of eukaryotic cells. (a) Larger cargos (red) require a transport receptor (green) to pass through the gate. (b) A quantum dot cargo moves through an NPC. Image: Alan Lowe
The nuclear pore complex (NPC) gates the traffic of all molecules between the cytoplasm and the nucleus of eukaryotic cells. (a) Larger cargos (red) require a transport receptor (green) to pass through the gate. (b) A quantum dot cargo moves through an NPC. Image: Alan Lowe

Abstract:
QB3 biophysicists have traced with unprecedented resolution the paths of cargos moving through the nuclear pore complex (NPC), a selective nanoscale aperture that controls access to the cell's nucleus, and answered several key questions about its function.

By Kaspar Mossman, QB3

QB3 researchers illuminate operation of molecular gateway to the cell nucleus

California | Posted on September 4th, 2010

The NPC, a large protein assembly shaped like a basketball net fringed with tentacles, is the gateway to the cell nucleus, where genetic information is stored. Each cell nucleus contains roughly 2,000 NPCs, embedded in the nuclear envelope. The NPC (which is about 50 nanometers wide) is responsible for all transport into and out of the nucleus. To prevent the contents of the rest of the cell's interior from mixing with that of the nucleus, the NPC discriminates between cargos with great precision.

Several viruses target the NPC to gain entry to the nucleus, and dysfunctional transport between the cytoplasm and the nucleus has been implicated in multiple diseases including cancer.

Scientists have constructed models for the NPC, but how this channel operates and achieves its selectivity has remained a mystery. It is known that, to make it through the NPC, large molecules must bind at least a few receptors called "importins"; whether binding more importins speeds or slows a molecule's passage has been unclear. So, too, has the exact point at which a carrier protein called "Ran" plays a crucial part, substituting one molecule of GTP (a cellular fuel, an analog of the better-known ATP) for one of GDP that the large molecule brings with it when it enters the NPC.

Karsten Weis, a UC Berkeley professor of molecular and cell biology, Jan Liphardt, a UC Berkeley professor of physics, and colleagues conducted advanced imaging experiments that resolved these issues. (Weis and Liphardt are members of QB3.) The research was published September 1st in the journal Nature, in a paper on which Berkeley post-doc Alan Lowe and graduate student Jake Siegel were joint first authors.

Previously, scientists had observed the motion of small molecules (a few nm in diameter), labeled with fluorescent tags, through the NPC. But the rapid transit and faint signal of these molecules resulted in sparse, fuzzy data. Lowe, Siegel, et al. employed "quantum dots", which are about 20 nm in diameter—and hence slower than smaller molecules—and much brighter than conventional fluorophores. The researchers coated the quantum dots with signals recognized by importins. Using a microscopic technique that allowed them to see a flat, thin visual slice through living cells, they watched hundreds of individual dots entering, jiggling around in, being ejected from, and in some cases admitted through, NPCs. The researchers recorded video data and tracked the motion of 849 quantum dots with nanometer precision.

The spaghetti-like paths of the quantum dots, superimposed on one another, revealed that the particles fell into three classes: "early aborts," which were briefly confined and then bounced out; "late aborts," which wandered in and meandered to the inner end of the pore before exiting the way they came; and "successes," which followed much the same paths as the late aborts but were granted entry.

From the paths' erratic meanderings, the researchers deduced that the quantum dots were indeed diffusing randomly, rather than being actively transported. And adding more importins to the dots' coating shortened the transit time, suggesting that importins make incoming cargo more soluble within the NPC rather than binding to interior walls.

The researchers found a particularly interesting result when they withheld the carrier protein Ran from the experiment. Without Ran in the mix, the quantum dots followed exactly the same range of paths as when Ran was present, except that virtually none passed through the NPC.

Considering their path data, the authors drew a model for how the NPC operates. Large cargo is initially captured by the NPC's filament fringe. It then encounters a constriction, through which it can enter a sort of antechamber. Then, in certain cases, Ran exchanges the cargo's GDP for a GTP and it is admitted into the nucleus. Only the final step is irreversible.

"It's an elegant study," says Michael Rout, a professor of cellular and structural biology at The Rockefeller University whose specialty is NPC transport. "If we do eventually understand how the NPC operates at the subtlest level, we could perhaps build filters to select molecules of interest."

Indeed, one of the main new insights is that the NPC's selectivity seems to result from a cascade of filters, each preferring correct cargos, rather than just one very selective step. This helps explain why some things can easily get into the nucleus and other things are excluded. This discovery may have some very practical clinical implications, Liphardt and Weis say. It may enable scientists to develop techniques to efficiently deliver large man-made cargos, such as drug-polymer conjugates and contrast agents, to the nucleus, which contains the genome.

####

About California Institute for Quantitative Biosciences (QB3)
QB3’s mandate is to fulfill its social contract to accelerate discovery and innovation, improving the quality of life in California and beyond.

QB3 harnesses the quantitative sciences of physics and engineering to unify our understanding of biological systems at all levels of complexity, from atoms and molecules to cells, tissues, and entire living organisms. QB3 scientists make discoveries that drive the development of technologies, products, and wholly new industries, ensuring that California remains competitive in the 21st century.

QB3's goals are to fuel the California bioeconomy; to support research and training in quantitative biosciences; and to translate academic research into products and services that benefit society.

For more information, please click here

Copyright © California Institute for Quantitative Biosciences (QB3)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Academic/Education

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Quantum Dots/Rods

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project