Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Developments in Nanobiotechnology at UCSB Point to Medical Applications

Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin
Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin

Abstract:
Two new groundbreaking scientific papers by researchers at UC Santa Barbara demonstrate the synthesis of nanosize biological particles with the potential to fight cancer and other illnesses. The studies introduce new approaches that are considered "green" nanobiotechnology because they use no artificial compounds.

Developments in Nanobiotechnology at UCSB Point to Medical Applications

Santa Barbara, CA | Posted on September 3rd, 2010

Luc Jaeger, associate professor of chemistry and biochemistry at UCSB, explained that there is nothing short of a revolution going on in his field -- one that permeates all areas of biochemistry, especially his area of nanobiotechnology. The revolution involves understanding the role of RNA in cells.

"Considering the fact that up to 90 percent of the human genome is transcribed into RNA, it becomes clear that RNA is one of the most important biopolymers on which life is based," said Jaeger. "We are still far from understanding all the tremendous implications of RNA in living cells."

Jaeger's team is putting together complex three-dimensional RNA molecules -- nanosize polyhedrons that could be used to fight disease. The molecules self assemble into the new shapes. The work is funded by the National Institutes of Health (NIH), and there is a patent pending jointly between NIH and UCSB on the new designs.

"We are interested in using RNA assemblies to deliver silencing RNAs and therapeutic RNA aptamers to target cancer and other diseases," said Jaeger. "It is clear that RNA is involved in a huge number of key processes that are related to health issues."

Jaeger believes the RNA-based approaches to delivering new therapies in the body will be safer than those using artificial compounds that might have undesirable side effects down the line.

"By using RNA molecules as our primary medium, we are practicing ‘green' nanobiotechnology," explained Jaeger. "The research program developed in my lab at UCSB aims at contributing in a positive way to medicine and synthetic biology. We try to avoid any approaches that raise controversial bioethical issues in the public square. It's not an easy task, but I am convinced that it will pay off in the long run."

The more recent of the two scientific papers describing the new work -- "In vitro assembly of cubic RNA-based scaffolds designed in silicon" -- published online Monday, August 30, by Nature Nanotechnology. The earlier paper -- "A polyhedron made of tRNAs" by Severcan and colleagues -- was published online on July 18 by Nature Chemistry. The print edition of this article will be published in Nature Chemistry's September issue.

The second author on the Nature Chemistry paper is Cody Geary, a postdoctoral fellow in Jaeger's lab. Kirill A. Afonin, also a postdoctoral fellow in Jaeger's lab, is the first author on the Nature Nanotechnnology article.

Bruce Shapiro, a senior author on the Nature Nanotechnology article, is based at the National Cancer Institute in Frederick, Md. and is also funded by NIH. Jaeger and his team worked with Shapiro to develop a computerized approach for facilitating the design of self-assembling RNA strands. Further assistance came from the National Resource for Automated Molecular Microscopy located at Scripps Institute in La Jolla, Calif.

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Environment

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE