Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Developments in Nanobiotechnology at UCSB Point to Medical Applications

Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin
Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin

Abstract:
Two new groundbreaking scientific papers by researchers at UC Santa Barbara demonstrate the synthesis of nanosize biological particles with the potential to fight cancer and other illnesses. The studies introduce new approaches that are considered "green" nanobiotechnology because they use no artificial compounds.

Developments in Nanobiotechnology at UCSB Point to Medical Applications

Santa Barbara, CA | Posted on September 3rd, 2010

Luc Jaeger, associate professor of chemistry and biochemistry at UCSB, explained that there is nothing short of a revolution going on in his field -- one that permeates all areas of biochemistry, especially his area of nanobiotechnology. The revolution involves understanding the role of RNA in cells.

"Considering the fact that up to 90 percent of the human genome is transcribed into RNA, it becomes clear that RNA is one of the most important biopolymers on which life is based," said Jaeger. "We are still far from understanding all the tremendous implications of RNA in living cells."

Jaeger's team is putting together complex three-dimensional RNA molecules -- nanosize polyhedrons that could be used to fight disease. The molecules self assemble into the new shapes. The work is funded by the National Institutes of Health (NIH), and there is a patent pending jointly between NIH and UCSB on the new designs.

"We are interested in using RNA assemblies to deliver silencing RNAs and therapeutic RNA aptamers to target cancer and other diseases," said Jaeger. "It is clear that RNA is involved in a huge number of key processes that are related to health issues."

Jaeger believes the RNA-based approaches to delivering new therapies in the body will be safer than those using artificial compounds that might have undesirable side effects down the line.

"By using RNA molecules as our primary medium, we are practicing ‘green' nanobiotechnology," explained Jaeger. "The research program developed in my lab at UCSB aims at contributing in a positive way to medicine and synthetic biology. We try to avoid any approaches that raise controversial bioethical issues in the public square. It's not an easy task, but I am convinced that it will pay off in the long run."

The more recent of the two scientific papers describing the new work -- "In vitro assembly of cubic RNA-based scaffolds designed in silicon" -- published online Monday, August 30, by Nature Nanotechnology. The earlier paper -- "A polyhedron made of tRNAs" by Severcan and colleagues -- was published online on July 18 by Nature Chemistry. The print edition of this article will be published in Nature Chemistry's September issue.

The second author on the Nature Chemistry paper is Cody Geary, a postdoctoral fellow in Jaeger's lab. Kirill A. Afonin, also a postdoctoral fellow in Jaeger's lab, is the first author on the Nature Nanotechnnology article.

Bruce Shapiro, a senior author on the Nature Nanotechnology article, is based at the National Cancer Institute in Frederick, Md. and is also funded by NIH. Jaeger and his team worked with Shapiro to develop a computerized approach for facilitating the design of self-assembling RNA strands. Further assistance came from the National Resource for Automated Molecular Microscopy located at Scripps Institute in La Jolla, Calif.

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Possible Futures

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Environment

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Nanobiotechnology

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic