Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Developments in Nanobiotechnology at UCSB Point to Medical Applications

Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin
Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin

Abstract:
Two new groundbreaking scientific papers by researchers at UC Santa Barbara demonstrate the synthesis of nanosize biological particles with the potential to fight cancer and other illnesses. The studies introduce new approaches that are considered "green" nanobiotechnology because they use no artificial compounds.

Developments in Nanobiotechnology at UCSB Point to Medical Applications

Santa Barbara, CA | Posted on September 3rd, 2010

Luc Jaeger, associate professor of chemistry and biochemistry at UCSB, explained that there is nothing short of a revolution going on in his field -- one that permeates all areas of biochemistry, especially his area of nanobiotechnology. The revolution involves understanding the role of RNA in cells.

"Considering the fact that up to 90 percent of the human genome is transcribed into RNA, it becomes clear that RNA is one of the most important biopolymers on which life is based," said Jaeger. "We are still far from understanding all the tremendous implications of RNA in living cells."

Jaeger's team is putting together complex three-dimensional RNA molecules -- nanosize polyhedrons that could be used to fight disease. The molecules self assemble into the new shapes. The work is funded by the National Institutes of Health (NIH), and there is a patent pending jointly between NIH and UCSB on the new designs.

"We are interested in using RNA assemblies to deliver silencing RNAs and therapeutic RNA aptamers to target cancer and other diseases," said Jaeger. "It is clear that RNA is involved in a huge number of key processes that are related to health issues."

Jaeger believes the RNA-based approaches to delivering new therapies in the body will be safer than those using artificial compounds that might have undesirable side effects down the line.

"By using RNA molecules as our primary medium, we are practicing ‘green' nanobiotechnology," explained Jaeger. "The research program developed in my lab at UCSB aims at contributing in a positive way to medicine and synthetic biology. We try to avoid any approaches that raise controversial bioethical issues in the public square. It's not an easy task, but I am convinced that it will pay off in the long run."

The more recent of the two scientific papers describing the new work -- "In vitro assembly of cubic RNA-based scaffolds designed in silicon" -- published online Monday, August 30, by Nature Nanotechnology. The earlier paper -- "A polyhedron made of tRNAs" by Severcan and colleagues -- was published online on July 18 by Nature Chemistry. The print edition of this article will be published in Nature Chemistry's September issue.

The second author on the Nature Chemistry paper is Cody Geary, a postdoctoral fellow in Jaeger's lab. Kirill A. Afonin, also a postdoctoral fellow in Jaeger's lab, is the first author on the Nature Nanotechnnology article.

Bruce Shapiro, a senior author on the Nature Nanotechnology article, is based at the National Cancer Institute in Frederick, Md. and is also funded by NIH. Jaeger and his team worked with Shapiro to develop a computerized approach for facilitating the design of self-assembling RNA strands. Further assistance came from the National Resource for Automated Molecular Microscopy located at Scripps Institute in La Jolla, Calif.

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Possible Futures

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Self Assembly

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project