Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Caltech Chemists Develop Simple Technique to Visualize Atomic-Scale Structures

Atomic force micrograph of a one-atom thick sheet of graphene trapping water on a mica surface. The ice crystals (lightest blue) are the height of a two-water-molecule thick ice crystal. This first layer of water is ice, even at room temperature. At high humidity levels, a second layer of water will coat the first layer, also as ice. At very high humidity levels, additional layers of water will coat the surface as droplets. [Credit: Heath group/Caltech]
Atomic force micrograph of a one-atom thick sheet of graphene trapping water on a mica surface. The ice crystals (lightest blue) are the height of a two-water-molecule thick ice crystal. This first layer of water is ice, even at room temperature. At high humidity levels, a second layer of water will coat the first layer, also as ice. At very high humidity levels, additional layers of water will coat the surface as droplets. [Credit: Heath group/Caltech]

Abstract:
Researchers at the California Institute of Technology (Caltech) have devised a new technique—using a sheet of carbon just one atom thick—to visualize the structure of molecules. The technique, which was used to obtain the first direct images of how water coats surfaces at room temperature, can also be used to image a potentially unlimited number of other molecules, including antibodies and other biomolecules.

By Kathy Svitil

Caltech Chemists Develop Simple Technique to Visualize Atomic-Scale Structures

Pasadena, CA | Posted on September 3rd, 2010

A paper describing the method and the studies of water layers appears in the September 3 issue of the journal Science.

"Almost all surfaces have a coating of water on them," says James Heath, the Elizabeth W. Gilloon Professor and professor of chemistry at Caltech, "and that water dominates interfacial properties"—properties that affect the wear and tear on that surface. While surface coatings of water are ubiquitous, they are also very tough to study, because the water molecules are "in constant flux, and don't sit still long enough to allow measurements," he says.

Quite by accident, Heath and his colleagues developed a technique to pin down the moving molecules, under room-temperature conditions. "It was a happy accident—one that we were smart enough to recognize the significance of," he says. "We were studying graphene on an atomically flat surface of mica and found some nanoscale island-shaped structures trapped between the graphene and the mica that we didn't expect to see."

Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like chicken wire, but on an atomic scale), should be completely flat when layered onto an atomically flat surface. Heath and his colleagues—former Caltech graduate student Ke Xu, now at Harvard University, and graduate student Peigen Cao—thought the anomalies might be water, captured and trapped under the graphene; water molecules, after all, are everywhere.

To test the idea, the researchers conducted other experiments in which they deposited the graphene sheets at varying humidity levels. The odd structures became more prevalent at higher humidity, and disappeared under completely dry conditions, leading the researchers to conclude that they indeed were water molecules blanketed by the graphene. Heath and his colleagues realized that the graphene sheet was "atomically conformal"—it hugged the water molecules so tightly, almost like shrink wrap, that it revealed their detailed atomic structure when examined with atomic force microscopy. (Atomic force microscopes use a mechanical probe to essentially "feel" the surfaces of objects.)

"The technique is dead simple—it's kind of remarkable that it works," Heath says. The method, he explains, "is sort of like how people sputter carbon or gold onto biological cells so they can image them. The carbon or gold fixes the cells. Here, the graphene perfectly templates the weakly adsorbed water molecules on the surface and holds them in place, for up to a couple of months at least."

Using the technique, the researchers revealed new details about how water coats surfaces. They found that the first layer of water on mica is actually two water molecules thick, and has the structure of ice. Once that layer is fully formed, a second, two-molecule-thick layer of ice forms. On top of that, "you get droplets," Heath says. "It's truly amazing that the first two adsorbed layers of water form ice-like microscopic islands at room temperature," says Xu. "These fascinating structures are likely important in determining the surface properties of solids, including, for example, lubrication, adhesion, and corrosion."

The researchers have since successfully tested other molecules on other types of atomically flat surfaces—such flatness is necessary so the molecules don't nestle into imperfections in the surface, distorting their structure as measured through the graphene layer. "We have yet to find a system for which this doesn't work," says Heath. He and his colleagues are now working to improve the resolution of the technique so that it could be used to image the atomic structure of biomolecules like antibodies and other proteins. "We have previously observed individual atoms in graphene using the scanning tunneling microscope," says Cao. "Similar resolution should also be attainable for graphene-covered molecules."

"We could drape graphene over biological molecules—including molecules in at least partially aqueous environments, because you can have water present—and potentially get their 3-D structure," Heath says. It may even be possible to determine the structure of complicated molecules, like protein-protein complexes, "that are very difficult to crystallize," he says.

Whereas the data from one molecule might reveal the gross structure, data from 10 will reveal finer features—and computationally assembling the data from 1,000 identical molecules might reveal every atomic nook and cranny.

If you imagine that graphene draped over a molecule is sort of like a sheet thrown over a sleeping cat on your bed, Heath explains, having one image of the sheet-covered lump—in one orientation—"will tell you that it's a small animal, not a shoe. With 10 images, you can tell it's a cat and not a rabbit. With many more images, you'll know if it's a fluffy cat—although you won't ever see the tabby stripes."

The work in the paper, "Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions," was funded by the United States Department of Energy's Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Kathy Svitil

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Tools

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project