Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Edible Nanostructures

This simple recipe can be followed to make all-natural metal-organic frameworks.
This simple recipe can be followed to make all-natural metal-organic frameworks.

Abstract:
Compounds made from renewable materials could be used for gas storage, food technologies

By Megan Fellman

Edible Nanostructures

Evanston, IL | Posted on September 3rd, 2010

Sugar, salt, alcohol and a little serendipity led a Northwestern University research team to discover a new class of nanostructures that could be used for gas storage and food and medical technologies. And the compounds are edible.

The porous crystals are the first known all-natural metal-organic frameworks (MOFs) that are simple to make. Most other MOFs are made from petroleum-based ingredients, but the Northwestern MOFs you can pop into your mouth and eat, and the researchers have.

"They taste kind of bitter, like a Saltine cracker, starchy and bland," said Ronald A. Smaldone, a postdoctoral fellow at Northwestern. "But the beauty is that all the starting materials are nontoxic, biorenewable and widely available, offering a green approach to storing hydrogen to power vehicles."

Smaldone is co-first author of a paper about the edible MOFs published by Angewandte Chemie. The study is slated to appear on the cover of one of the journal's November issues.

"With our accidental discovery, chemistry in the kitchen has taken on a whole new meaning," said Sir Fraser Stoddart, Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. The implications of what Sir Fraser refers to as "Bob's your uncle chemistry" go all the way from cleaner air to healthier living, and it all comes from a product that can be washed down the sink.

Stoddart led the research group that included a trio of postdoctoral fellows in chemistry at Northwestern and colleagues from the University of California, Los Angeles (UCLA) and the University of St. Andrews in the U.K.

Metal-organic frameworks are well-ordered, lattice-like crystals. The nodes of the lattices are metals (such as copper, zinc, nickel or cobalt), and organic molecules connect the nodes. Within their very roomy pores, MOFs can effectively store gases such as hydrogen or carbon dioxide, making the nanostructures of special interest to engineers as well as scientists.

"Using natural products as building blocks provides a new direction for an old technology," said Jeremiah J. Gassensmith, a postdoctoral fellow in Stoddart's lab and an author of the paper.

"The metal-organic framework technology has been around since 1999 and relies on chemicals that come from crude oil," explained Ross S. Forgan, also a postdoctoral fellow in Stoddart's lab and co-first author of the paper. "Our main constituent is a starch molecule that is a leftover from corn production."

For their edible MOFs, the researchers use not ordinary table sugar but gamma-cyclodextrin, an eight-membered sugar ring produced from biorenewable cornstarch. The salts can be potassium chloride, a common salt substitute, or potassium benzoate, a commercial food preservative, and the alcohol is the grain spirit Everclear.

With these ingredients in hand, the researchers actually had set out to make new molecular architectures based on gamma-cyclodextrin. Their work produced crystals. Upon examining the crystals' structures using X-rays, the researchers were surprised to discover they had created metal-organic frameworks -- not an easy feat using natural products.

"Symmetry is very important in metal-organic frameworks," Stoddart said. "The problem is that natural building blocks are generally not symmetrical, which seems to prevent them from crystallizing as highly ordered, porous frameworks."

It turns out gamma-cyclodextrin solves the problem: it comprises eight asymmetrical glucose residues arranged in a ring, which is itself symmetrical. The gamma-cyclodextrin and potassium salt are dissolved in water and then crystallized by vapor diffusion with alcohol.

The resulting arrangement -- crystals consisting of cubes made from six gamma-cyclodextrin molecules linked in three-dimensions by potassium ions -- was previously unknown. The research team believes this strategy of marrying symmetry with asymmetry will carry over to other materials.

The cubes form a porous framework with easily accessible pores, perfect for capturing gases and small molecules. The pore volume encompasses 54 percent of the solid body.

"We achieved this level of porosity quickly and using simple ingredients," Smaldone said. "Creating metal-organic frameworks using petroleum-based materials, on the other hand, can be expensive and very time consuming."

Stoddart added, "It is both uplifting and humbling to come to terms with the fact that a piece of serendipity could have far-reaching consequences for energy storage and environmental remediation on the one hand and food quality control and health care on the other."

The National Science Foundation and the Engineering and Physical Sciences Research Council (U.K.) supported the research.

The title of the paper is "Metal-Organic Frameworks from Edible Natural Products." In addition to Stoddart, Smaldone, Forgan and Gassensmith, other authors of the paper are Hiroyasu Furukawa and Omar M. Yaghi, from UCLA, and Alexandra M. Z. Slawin, from the University of St. Andrews.

####

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Possible Futures

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Nanomedicine

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Discoveries

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Food/Agriculture/Supplements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Arrowhead Pharmaceuticals Presents Preclinical Data on Renal Cell Carcinoma Program at AACR 2016 April 19th, 2016

'Honeycomb' of nanotubes could boost genetic engineering April 7th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic