Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Notre Dame to Dedicate New Engineering Building

Stinson-Remick Hall
Stinson-Remick Hall

Abstract:
The University of Notre Dame will hold a ceremony Friday to dedicate a new engineering research facility. Stinson-Remick Hall will house a nanotechnology research center, the university's first semiconductor processing and device fabrication clean room and interdisciplinary learning center. The Midwest Institute for Nanoelectronics Discovery will also be located in the building.

Notre Dame to Dedicate New Engineering Building

South Bend, IN | Posted on September 2nd, 2010

A new era in engineering research at the University of Notre Dame will be officially marked Friday (Sept. 4) with the dedication of Stinson-Remick Hall, a 142,000-square-foot facility that houses a nano technology research center, an 9,000-square-foot semiconductor processing and device fabrication clean room, and an undergraduate interdisciplinary learning center.

The building also houses Holy Cross Chapel, believed to be the only chapel inside a university engineering building in the country.

The dedication ceremonies will include a private Mass and a blessing of the building at 5 p.m.

The new building is called Stinson-Remick Hall in honor of principal benefactors Kenneth and Ann Stinson and Jack and Mary Ann Remick. Stinson is a 1964 Notre Dame graduate and a member of the Board of Trustees. Jack Remick, a 1959 graduate, is a member of the University's advisory council for the College of Engineering and a gift from Mary Ann Remick created an endowment for visiting fellows at Notre Dame's Center for Ethics and Culture.

The learning center is named in honor of major benefactors Ted and Tracy McCourtney. A 1960 Notre Dame graduate, Ted McCourtney is an emeritus member of the Board of Trustees.

Researchers in Notre Dame's Center for Nano Science and Technology explore new device concepts and associated architectures that are enabled by novel phenomena on the nanometer scale. Established in 1999, the center is under the direction of Wolfgang Porod, Frank. M Freimann Professor of Electrical Engineering.

The Notre Dame Energy Center was created in 2005 under the direction of Joan Brennecke, Keating-Crawford Professor of Chemical and Biomolecular Engineering. Faculty members associated with the center are seeking to develop new energy technologies, based on carbon dioxide sequestration in ionic liquids, new materials for nuclear energy utilization and related energy efficiency research to meet a compelling national and international challenge.

A major energy research program located in the building is a federal Energy Frontier Research Center led by Peter Burns and funded with an $18.5-million U.S. Department of Energy grant. Research at the center seeks to understand and control materials that contain actinides at the nanoscale. The research is intended to lay the scientific foundation for advanced nuclear energy systems that may provide much more energy while creating less nuclear waste.

Another initiative housed in Stinson-Remick is the Midwest Institute for Nanoelectronics Discovery (MIND), a consortium of academic, industry and government partners led by Notre Dame which explores and develops advanced devices, circuits and nanosystems with performance capabilities beyond conventional devices.

The interdisciplinary learning center is four times the size of its former location in Cushing Hall. The center provides undergraduate students with a blend of computer work stations, library resources and laboratory space.

The semiconductor processing and device fabrication clean room will be the first such facility at Notre Dame.

Stinson-Remick also is home to Notre Dame's Advanced Diagnostics and Therapeutics initiative (AD&T), an interdisciplinary research initiative focused on developing diagnostic and therapeutic technologies at the smallest molecular scales to address a diverse set of health and environmental challenges.

Also housed in Stinson-Remick is the Notre Dame Nanofabrication Facility (NDNF), which features comprehensive facilities for developing nano- and microelectronic materials and devices. NDNF serves approximately 150 researchers across the University each year as well as faculty from many others universities and research facilities across the country.

The new building also houses the Notre Dame Integrated Imaging Facility, which serves the science and engineering research communities by integrating three areas of the University's imaging expertise: electron microscopy, optical microscopy and in vivo imaging.

####

For more information, please click here

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Videos/Movies

Graphene under pressure August 26th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

SUNY Poly Partnership with Japan's New Energy and Industrial Development Organization Drives Investment in and Installation of Emerging ‘Green’ Technologies at World-Class 'Zero Energy Nano' Building March 22nd, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic