Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Notre Dame to Dedicate New Engineering Building

Stinson-Remick Hall
Stinson-Remick Hall

Abstract:
The University of Notre Dame will hold a ceremony Friday to dedicate a new engineering research facility. Stinson-Remick Hall will house a nanotechnology research center, the university's first semiconductor processing and device fabrication clean room and interdisciplinary learning center. The Midwest Institute for Nanoelectronics Discovery will also be located in the building.

Notre Dame to Dedicate New Engineering Building

South Bend, IN | Posted on September 2nd, 2010

A new era in engineering research at the University of Notre Dame will be officially marked Friday (Sept. 4) with the dedication of Stinson-Remick Hall, a 142,000-square-foot facility that houses a nano technology research center, an 9,000-square-foot semiconductor processing and device fabrication clean room, and an undergraduate interdisciplinary learning center.

The building also houses Holy Cross Chapel, believed to be the only chapel inside a university engineering building in the country.

The dedication ceremonies will include a private Mass and a blessing of the building at 5 p.m.

The new building is called Stinson-Remick Hall in honor of principal benefactors Kenneth and Ann Stinson and Jack and Mary Ann Remick. Stinson is a 1964 Notre Dame graduate and a member of the Board of Trustees. Jack Remick, a 1959 graduate, is a member of the University's advisory council for the College of Engineering and a gift from Mary Ann Remick created an endowment for visiting fellows at Notre Dame's Center for Ethics and Culture.

The learning center is named in honor of major benefactors Ted and Tracy McCourtney. A 1960 Notre Dame graduate, Ted McCourtney is an emeritus member of the Board of Trustees.

Researchers in Notre Dame's Center for Nano Science and Technology explore new device concepts and associated architectures that are enabled by novel phenomena on the nanometer scale. Established in 1999, the center is under the direction of Wolfgang Porod, Frank. M Freimann Professor of Electrical Engineering.

The Notre Dame Energy Center was created in 2005 under the direction of Joan Brennecke, Keating-Crawford Professor of Chemical and Biomolecular Engineering. Faculty members associated with the center are seeking to develop new energy technologies, based on carbon dioxide sequestration in ionic liquids, new materials for nuclear energy utilization and related energy efficiency research to meet a compelling national and international challenge.

A major energy research program located in the building is a federal Energy Frontier Research Center led by Peter Burns and funded with an $18.5-million U.S. Department of Energy grant. Research at the center seeks to understand and control materials that contain actinides at the nanoscale. The research is intended to lay the scientific foundation for advanced nuclear energy systems that may provide much more energy while creating less nuclear waste.

Another initiative housed in Stinson-Remick is the Midwest Institute for Nanoelectronics Discovery (MIND), a consortium of academic, industry and government partners led by Notre Dame which explores and develops advanced devices, circuits and nanosystems with performance capabilities beyond conventional devices.

The interdisciplinary learning center is four times the size of its former location in Cushing Hall. The center provides undergraduate students with a blend of computer work stations, library resources and laboratory space.

The semiconductor processing and device fabrication clean room will be the first such facility at Notre Dame.

Stinson-Remick also is home to Notre Dame's Advanced Diagnostics and Therapeutics initiative (AD&T), an interdisciplinary research initiative focused on developing diagnostic and therapeutic technologies at the smallest molecular scales to address a diverse set of health and environmental challenges.

Also housed in Stinson-Remick is the Notre Dame Nanofabrication Facility (NDNF), which features comprehensive facilities for developing nano- and microelectronic materials and devices. NDNF serves approximately 150 researchers across the University each year as well as faculty from many others universities and research facilities across the country.

The new building also houses the Notre Dame Integrated Imaging Facility, which serves the science and engineering research communities by integrating three areas of the University's imaging expertise: electron microscopy, optical microscopy and in vivo imaging.

####

For more information, please click here

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Videos/Movies

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

Openings/New facilities/Groundbreaking/Expansion

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project