Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ORNL graphite foam technology licensed to LED North America

ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.
ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.

Abstract:
Technology developed at the Department of Energy's Oak Ridge National Laboratory that extends the life of light-emitting diode lamps has been licensed to LED North America.

ORNL graphite foam technology licensed to LED North America

Oak Ridge, TN | Posted on September 1st, 2010

The agreement signed today exclusively licenses a graphite foam technology developed by James Klett of ORNL's Materials Science and Technology Division. LED North America intends to use the graphite foam to passively cool components in LED lamps, which are increasingly in demand in applications such as street lights and parking garage lighting. LED North America specializes in providing LED lighting products for municipal, commercial and industrial applications.

Cooling LED lamps is critical to increasing their efficiency, considering that each 10-degree decrease in temperature can double the life of the lighting components. Using graphite foam to more efficiently manage the heat of LEDs could help extend the lamp's lifespan and lower its price, making the lamps more attractive to a broader consumer base. ORNL's James Klett hopes the graphite foam can offer potential savings for customers.

"While this technology will reduce temperatures and increase the life of the LED lighting systems, what it will really do is save municipalities millions of dollars every year in replacement fixture costs as well as maintenance," Klett said.

The newly licensed graphite foam invention offers many advantages over comparable heat sink materials such as copper and aluminum. Graphite foam's high thermal conductivity, low weight and easy machinability give the material greater design flexibility and make it a lighter, cheaper and more efficient cooling option.

The foam's unusual graphite crystal structure is the key to its conductivity. It has a skeletal structure full of air pockets, making it only 25 percent dense and lightweight. The network of ligaments in the foam wicks heat away from its source, making it an excellent candidate to cool the LED lamp components.

Championed as an energy saving lighting source, LEDs are becoming more widespread due to their low energy consumption, compact size and long life expectancy. Improved LED performance will enable LED North America to offer longer warranty periods than its competitors.

LED North America's relationship with ORNL helped prompt Andrew Wilhelm, one of the company's founders, to locate the company in Tech 2020, a business incubator in Oak Ridge.

"The proximity to ORNL gives the us the opportunity to work closely with ORNL researchers to further refine the integration of the graphite foam material into LED lamps," Wilhelm said.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Media Contact: Morgan McCorkle
Communications and External Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Patents/IP/Tech Transfer/Licensing

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Let there be light: Chemists develop magnetically responsive liquid crystals - UC Riverside discovery has applications in signage, posters, writing tablets, billboards and anti-counterfeit technology June 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE