Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ORNL graphite foam technology licensed to LED North America

ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.
ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.

Abstract:
Technology developed at the Department of Energy's Oak Ridge National Laboratory that extends the life of light-emitting diode lamps has been licensed to LED North America.

ORNL graphite foam technology licensed to LED North America

Oak Ridge, TN | Posted on September 1st, 2010

The agreement signed today exclusively licenses a graphite foam technology developed by James Klett of ORNL's Materials Science and Technology Division. LED North America intends to use the graphite foam to passively cool components in LED lamps, which are increasingly in demand in applications such as street lights and parking garage lighting. LED North America specializes in providing LED lighting products for municipal, commercial and industrial applications.

Cooling LED lamps is critical to increasing their efficiency, considering that each 10-degree decrease in temperature can double the life of the lighting components. Using graphite foam to more efficiently manage the heat of LEDs could help extend the lamp's lifespan and lower its price, making the lamps more attractive to a broader consumer base. ORNL's James Klett hopes the graphite foam can offer potential savings for customers.

"While this technology will reduce temperatures and increase the life of the LED lighting systems, what it will really do is save municipalities millions of dollars every year in replacement fixture costs as well as maintenance," Klett said.

The newly licensed graphite foam invention offers many advantages over comparable heat sink materials such as copper and aluminum. Graphite foam's high thermal conductivity, low weight and easy machinability give the material greater design flexibility and make it a lighter, cheaper and more efficient cooling option.

The foam's unusual graphite crystal structure is the key to its conductivity. It has a skeletal structure full of air pockets, making it only 25 percent dense and lightweight. The network of ligaments in the foam wicks heat away from its source, making it an excellent candidate to cool the LED lamp components.

Championed as an energy saving lighting source, LEDs are becoming more widespread due to their low energy consumption, compact size and long life expectancy. Improved LED performance will enable LED North America to offer longer warranty periods than its competitors.

LED North America's relationship with ORNL helped prompt Andrew Wilhelm, one of the company's founders, to locate the company in Tech 2020, a business incubator in Oak Ridge.

"The proximity to ORNL gives the us the opportunity to work closely with ORNL researchers to further refine the integration of the graphite foam material into LED lamps," Wilhelm said.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Media Contact: Morgan McCorkle
Communications and External Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Nature: Low-reflection wings make butterflies nearly invisible: Irregular nanostructures on the transparent wing of the glasswing butterfly prevent the reflection of light -- publication in Nature Communications -- researchers plan applications April 23rd, 2015

Whiteboards of the future: New electronic paper could make inexpensive electronic displays: A simple structure of bi-colored balls made of tough, inexpensive materials is well suited for large handwriting-enabled e-paper displays April 21st, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Patents/IP/Tech Transfer/Licensing

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Heat-Converting Material Patents Licensed April 8th, 2015

From tobacco to cyberwood March 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project