Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ORNL graphite foam technology licensed to LED North America

ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.
ORNL researcher James Klett developed a graphite foam technology that can help cool LED light fixtures and extend their lifespan.

Abstract:
Technology developed at the Department of Energy's Oak Ridge National Laboratory that extends the life of light-emitting diode lamps has been licensed to LED North America.

ORNL graphite foam technology licensed to LED North America

Oak Ridge, TN | Posted on September 1st, 2010

The agreement signed today exclusively licenses a graphite foam technology developed by James Klett of ORNL's Materials Science and Technology Division. LED North America intends to use the graphite foam to passively cool components in LED lamps, which are increasingly in demand in applications such as street lights and parking garage lighting. LED North America specializes in providing LED lighting products for municipal, commercial and industrial applications.

Cooling LED lamps is critical to increasing their efficiency, considering that each 10-degree decrease in temperature can double the life of the lighting components. Using graphite foam to more efficiently manage the heat of LEDs could help extend the lamp's lifespan and lower its price, making the lamps more attractive to a broader consumer base. ORNL's James Klett hopes the graphite foam can offer potential savings for customers.

"While this technology will reduce temperatures and increase the life of the LED lighting systems, what it will really do is save municipalities millions of dollars every year in replacement fixture costs as well as maintenance," Klett said.

The newly licensed graphite foam invention offers many advantages over comparable heat sink materials such as copper and aluminum. Graphite foam's high thermal conductivity, low weight and easy machinability give the material greater design flexibility and make it a lighter, cheaper and more efficient cooling option.

The foam's unusual graphite crystal structure is the key to its conductivity. It has a skeletal structure full of air pockets, making it only 25 percent dense and lightweight. The network of ligaments in the foam wicks heat away from its source, making it an excellent candidate to cool the LED lamp components.

Championed as an energy saving lighting source, LEDs are becoming more widespread due to their low energy consumption, compact size and long life expectancy. Improved LED performance will enable LED North America to offer longer warranty periods than its competitors.

LED North America's relationship with ORNL helped prompt Andrew Wilhelm, one of the company's founders, to locate the company in Tech 2020, a business incubator in Oak Ridge.

"The proximity to ORNL gives the us the opportunity to work closely with ORNL researchers to further refine the integration of the graphite foam material into LED lamps," Wilhelm said.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Media Contact: Morgan McCorkle
Communications and External Relations
865.574.7308

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Possible Futures

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Patents/IP/Tech Transfer/Licensing

Programmable materials find strength in molecular repetition May 23rd, 2016

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Researchers integrate diamond/boron nitride crystalline layers for high-power devices May 12th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic