Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > A New Design for a Gravimeter

Scientists have developed a novel design for a highly compact, ultra-sensitive quantum device to measure subtle changes in gravity over very short time or distance scales.*

A New Design for a Gravimeter

College Park, MD | Posted on September 1st, 2010

Tools of this sort - called atom interferometers (AIs) - are now used to search for natural resources beneath the Earth's surface, navigate deep underwater or in the air, and measure Newton's gravitational constant to extraordinary precision. But the new design, by researchers from the Joint Quantum Institute and its Physics Frontier Center, offers the possibility of unprecedented temporal resolution by harnessing the very recently demonstrated ability to create "synthetic" magnetic fields.

"The ability to measure gravity over fine time scales will help in finding oil fields and mineral deposits," says coauthor and JQI Fellow Victor Galitski. "Imagine an aircraft flying over an unexplored area. If heavy element deposits are hidden underneath, the gravimeter will react promptly by showing strong fluctuations in the local gravity field."

Atom interferometers rely on a counterintuitive but central precept of quantum mechanics: Everything, including matter - not just subatomic particles, atoms and molecules, but also macroscopic objects such as Buicks and buildings - has wave properties. Just like waves of light or sound, "matter waves" from different objects can interfere with one another constructively (reinforcement) or destructively (cancellation).

In addition, the new design takes advantage of yet another quantum phenomenon: "superposition," a condition in which objects have multiple values of the same property at the same time - the equivalent, in the classical world, of a ball that is simultaneously completely red and completely blue until someone looks at it. Once it is seen (or measured in any other way), however, the superposition disappears and the ball becomes either red or blue.

Conventional AIs exploit interference to measure gravity at a given location, typically by directing a stream of atoms into a beamsplitter, which divides the atoms' wave functions into two branches. Inside the device, each branch is propelled on separate - but completely symmetrical, mirror-image - paths down a cylinder. The only difference between the paths is that one is higher than the other - and therefore responds just slightly differently to the force of gravity. So when the two atom branches are recombined, their matter waves will be out of phase; and the amount of phase difference will be proportional to the difference in gravitational force felt by each.

Although useful, that method does not provide a good way to measure how gravitational force changes over small time periods and short length scales. And it necessarily requires the atoms to travel a relatively large distance, typically tens of centimeters, in order to produce a sufficiently large phase difference.

The JQI/PFC design, by contrast, uses an atom trap only 50 micrometers in diameter - about half the thickness of a human hair - containing millions of atoms chilled to a fraction of a degree above absolute zero. The atoms sit in a weak, inhomogeneous magnetic field, and each has a slightly different spin state (a kind of angular momentum) depending on its position in the field. The atoms are irradiated by a continuous-wave laser that imparts momentum to each atom, the magnitude and direction of which depends on the atom's spin state. This arrangement produces "synthetic" magnetism,** a condition which causes neutral atoms to behave as if they were charged particles in a real magnetic field.

"Recently, JQI researchers led by Ian Spielman have demonstrated that a synthetic magnetic field and synthetic spin can be created in cold-atom systems," says coauthor and JQI Fellow Jacob Taylor of the National Institute of Standards and Technology. "The proposed gravimeter setup is largely inspired by these amazing advances, and it uses the simplest possible configuration of replicas of a uniform synthetic field, which can be created easily in Spielman's experiment."

Then each atom is exposed to microwave radiation tuned to the specific wavelength that will project it into a "superposition" of two opposite spin states. [See Step 1 in the attached figure.] At that point, the trap is displaced by a small amount, about 20 micrometers, which has the effect of moving the atom, with its superposed states, into a different part of the synthetic field. [Step 2 in the figure.] Each of the two spin states starts to move in a spiral motion, but in opposite directions around the interior of the trap. [Step 3 in the illustration, also depicted in the short movie.] While in transit, each superposition state will be affected differently by gravity or any other acceleration. As a result, when their paths once again overlap at the end of their spiral trajectories, they will be slightly out of phase.

Finally, the atom is irradiated with a second microwave pulse [Step 4] that causes the atom to emit light if it is in a certain spin state, and to remain "dark" (no emission) if it is in another. If the superposed spin states had not experienced any external effects, such as gravity, each atom in the trap would have a 50-percent chance of emitting or not emitting. But if the paths of the spin states are affected by gravity, the collective output of the entire set of trapped atoms will emit more or less light - and the degree to which the light output varies is a measure of the strength of the gravitational field.

In addition to its potential practical uses, the new design can help test the fundamental laws of nature, such as Einstein's theory of relativity, which some believe maybreak down at very small time and length scales.

* "Interferometry with Synthetic Gauge Fields," B. M. Anderson, J. M. Taylor, and V. M. Galitski,

** "Synthetic magnetic fields for ultracold neutral atoms," Y.-J. Lin, R.L. Compton, K. Jimenez-Garcia, J.V. Porto and I.B. Spielman, Nature 462, 628 (2009).


About Joint Quantum Institute
We are on the verge of a new technological revolution as the strange and unique properties of quantum physics become relevant and exploitable in the context of information science and technology.

The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland (UMD), the National Institute of Standards and Technology (NIST) and the Laboratory for Physical Sciences (LPS). Each institution brings to JQI major experimental and theoretical research programs that are dedicated to the goals of controlling and exploiting quantum systems.

For more information, please click here


Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015


More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015


SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizardŽ 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015


Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Quantum nanoscience

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

From metal to insulator and back again April 22nd, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project