Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny rulers to measure nanoscale structures

In contrast to a conventional nanoparticle dimer plasmon ruler, this new one shows an approximately linear relationship between the resonance wavelength shifts and nanosphere dimer interparticle separation for a linear plasmon ruler.
In contrast to a conventional nanoparticle dimer plasmon ruler, this new one shows an approximately linear relationship between the resonance wavelength shifts and nanosphere dimer interparticle separation for a linear plasmon ruler.

Abstract:
With the advent of nanometer-sized machines, there is considerable demand for stable, precise tools to measure absolute distances and distance changes. One way to do this is with a plasmon ruler. In physics jargon, a "plasmon" is the quasiparticle resulting from the quantization of plasma oscillation; it's essentially the collective oscillations of the free electron gas at a metallic surface, often at optical frequencies.

Tiny rulers to measure nanoscale structures

College Park, Maryland | Posted on September 1st, 2010

A noble metallic dimer (a molecule that results from combining two entities of the same species) has been used as a plasmon ruler to make absolute distance and distance change measurements.

Physicists at China's Wuhan University discovered that nanospheres combined with a nanorod dimer could be used to solve the problem of measurement sensitivity. They provide details about their findings in the American Institute of Physics' Journal of Applied Physics.

Shao-Ding Liu and Mu-Tian Cheng used a nanostructure as a linear plasmon ruler. Nanospheres were used to modify surface plasmon coupling of a nanorod dimer. They found that the resonance wavelength shift increases approximately linearly with the increasing of a nanosphere's interparticle separations -- resulting in a structure that's useful as a plasmon ruler with homogenous measurement sensitivity.

"A nanoparticle dimer plasmon ruler possesses many advantages because its measurement sensitivity is homogeneous, it can operate in the near-infrared region, and the structure's size and nanorod aspect ratio can be modified freely to get the desired measurement range and sensitivity," notes Liu.

Applications for the linear plasmon ruler extend beyond studies of optical properties of metallic nanostructures to single-molecule microscopy, surface-enhanced Raman spectroscopy, waveguiding and biosensing.

More Information

The article, "Linear plasmon ruler with tunable measurement range and sensitivity" by Shao-Ding Liu and Mu-Tian Cheng will appear in the Journal of Applied Physics

jap.aip.org/resource/1/japiau/v108/i3/p034313_s1?isAuthorized=no

####

For more information, please click here

Contacts:
Corporate Headquarters
One Physics Ellipse
College Park, Maryland 20740-3843
301-209-3100

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Physics

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Possible Futures

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Discoveries

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project