Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NREL Solar Technology Will Warm Air at 'Home'

NREL's Craig Christensen and Chuck Kutscher stand next to a wall at the RSF that uses their award-winning transpired air collector technology. Credit: Dennis Schroeder
NREL's Craig Christensen and Chuck Kutscher stand next to a wall at the RSF that uses their award-winning transpired air collector technology. Credit: Dennis Schroeder

Abstract:
Sometimes the way back home isn't straightforward. But once you find your way, you know you'll be welcomed with open arms. Transpired solar air collector technology (*), developed at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in the 1990s, recently "found its way home" and is now an integral part of the comfort heating system of the new Research Support Facility (RSF).

By Heather Lammers

NREL Solar Technology Will Warm Air at 'Home'

Boulder, CO | Posted on July 30th, 2010

"The solar collector is really important to the building." Philip Macey, RSF project manager for Haselden Construction, said. "It's the way we get free pre-heated warmed air."

Commercial and industrial buildings in the U.S. have a specific need when it comes to ventilation systems and heating. Although having fresh air inside a building always is desirable, drawing fresh air into a building on a crisp winter day can mean huge amounts of energy is required to heat that air to make it feel comfortable. In fact, 13 percent of the energy used in the U.S. goes to heating residential and commercial buildings.

Air Collectors Are Simple, Elegant Solutions

By using a dark-colored, perforated metal plate on the south side of a building, three NREL scientists have perfected a way for buildings to pre-heat the air coming in, reducing the need for additional heating energy.

The basic concept of a transpired solar air collector is for the perforated plate to be warmed by the sunlight hitting the south side of a building. A fan added to the building's existing ventilation system slowly draws warmed ventilation air into the building through the plate. The solar energy absorbed by the dark plate is transferred to the air flowing through it. This process can efficiently preheat the air going into a building like the RSF by as much as 40 degrees F.

"We knew we needed to create pre-warmed air for the RSF and we found a product and kind of had to chuckle when we realized this was going to be perfect — the technology was made by NREL," Macey said. "That's one of those moments when you realized you are obviously going in the right direction when things line up like this."

Unlike previous technologies for flat panel solar collectors, NREL's transpired solar collector does not require glass. Glass covers were typically required to prevent heat loss to the air and could be expensive and reflect some of the solar radiation needed to heat the air. Design refinements identified by NREL research and computer modeling significantly boosted the amount of available solar energy that the transpired solar collector can capture.

"These tend to be very efficient solar collectors," Chuck Kutscher, principal engineer and group manager of the Thermal Systems Group, said. "These collectors can get 75 to 80 percent of the energy of the sunlight striking the collector absorbed into the ventilation air." Kutscher was one of the researchers who originally worked on the transpired solar collector for NREL. His research was the subject of his Ph.D. thesis and also provided thesis work for NREL's Craig Christensen and former employee Keith Gawlik.

The developments that NREL brought to this technology were so exciting that the transpired solar collector was recognized by Popular Science and Research and Development magazines as one of the most innovative technology developments of the year.

"Researching the transpired solar collector was a really fun project for us for a couple of reasons," Kutscher said. "We did a wide breadth of research, we covered a lot of different areas, and it was a much more comprehensive study of the technology than we would typically do. It was a totally new concept and we had to develop new equations to understand how it would work. Yet it is a simple and elegant technology that is inexpensive and highly efficient."

Not the First Solar Collector at NREL

"We were gratified to find out the transpired solar collector would be used on the RSF," Kutscher said. "But it's actually the second to be installed at NREL."

In the 1990s, NREL placed a transpired solar collector on its waste handling facility. Because the facility stores waste chemicals, it uses expensive electric resistance heating and requires a large amount of ventilation.

"The Waste Handling Facility was an ideal application," Kutscher said. "We put instruments on that wall, and then studied and reported the results as part of an International Energy Agency task. So it's the second collector at NREL, but the first one to be on an office building."

Haselden Construction and RNL built the 222,000 square-foot Research Support Facility building, which is designed to be a model for sustainable, high-performance building design, and provides DOE-owned work space for administrative staff occupying leased space in the nearby Denver West Office Park. The RSF was designed by RNL. Stantec Consulting served as the project's engineering consultant.

(*) PDF 309 KB - www.nrel.gov/docs/fy06osti/29913.pdf

####

For more information, please click here

Copyright © National Renewable Energy Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Openings/New facilities/Groundbreaking/Expansion

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Beneq is on the move! June 12th, 2014

NTU launches $30 million 3D printing research centre: New centre to establish $5 million joint-lab for 3D printing with industry leader SLM Solutions May 28th, 2014

Announcements

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

Construction

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Scientists Produce Self-Cleaning Coatings on Glass Substrate March 17th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

Colored diamonds are a superconductor’s best friend March 6th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE