Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SEMATECH and Carl Zeiss Demonstrate Mask Pattern Alignment and Registration to Enable Double Patterning Lithography

Abstract:
Next generation overlay metrology system improves photomask registration measurement to advance manufacturing

SEMATECH and Carl Zeiss Demonstrate Mask Pattern Alignment and Registration to Enable Double Patterning Lithography

Albany, NY, and Jena, Germany | Posted on July 30th, 2010

SEMATECH and the Semiconductor Metrology Systems (SMS) division from Carl Zeiss announced today that Zeiss' next-generation photomask registration and overlay metrology system has successfully passed a key development milestone. The jointly developed system - called PROVE™ - demonstrated the measurement capability for advanced photomasks for the 32 nm node and below. In a series of test runs, the key specifications -- 0.5 nm repeatability and 1.0 nm accuracy in image placement, registration and overlay measurement -- were verified.

"The mask pattern placement metrology tool project builds upon an already successful partnership between Carl Zeiss SMS and SEMATECH for past work on mask Aerial Image Metrology Systems (AIMS™) tool platforms. The partnership has resulted in a working metrology tool that is meeting specifications for repeatability, reproducibility, and accuracy at the 32 nm half-pitch node," said Bryan Rice, director of lithography at SEMATECH. "The industry now has the capability to determine smaller image placement errors than could be measured before. Achieving these specifications is a major milestone toward enabling the International Technology Roadmap for Semiconductors (ITRS) mask requirements for the 32 nm node and below. This accomplishment will help to advance the development of photomasks with tighter overlay requirements, demanded by memory devices and double patterning methods."

The performance targets of the tool were driven by the requirements for advanced memory and double exposure/double patterning mask pattern placement and overlay that will help extend 193nm lithography according to the ITRS.

"To achieve the performance specification of the PROVE™ system is a major milestone in the project and crucial for our customers in the mask making industry. The system is based on a completely new developed platform enabling in-die and sub-nanometer pattern placement metrology in a most versatile way. The measurements can be done on arbitrary production features in the active area of the photomask for accurate and cost efficient metrology and is extendable to EUV technology," said Dr. Oliver Kienzle, Managing Director of Carl Zeiss SMS. "We will now roll-out the PROVE™ product with deliveries to our customers."

This technology represents a significant improvement over previous capability due primarily to the incorporation of high-resolution 193nm wavelength imaging optics, a flexible illuminator that maximizes image contrast, a highly versatile in-die registration analysis algorithm, and a state-of-the-art metrology platform. The system can be fully extended to measure EUV photomasks. The tool will play a vital role in enabling next generation mask-making technology.

SEMATECH's Lithography Program is leading the industry in providing critical information about and solutions to current and emerging lithography systems. Carl Zeiss was chosen to develop the system in April 2007 by an evaluation team of mask makers and SEMATECH member companies. Carl Zeiss' proposal included a novel design allowing mask manufacturers to measure position deviation of photomask features with high precision and accuracy. Since that time Carl Zeiss and SEMATECH engineers have partnered to develop the concept into a working metrology tool.

####

About SEMATECH
For 20 years, SEMATECH® (www.sematech.org) has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

About Carl Zeiss SMT AG
Carl Zeiss SMT is one of the leading manufacturers of lithography optics and light, electron and ion-optical inspection, analysis and measuring systems. Its Semiconductor Metrology Systems Division focuses on a key component in semiconductor manufacturing, the photomask. Core expertise in light and electron optics, complemented by a femto-second laser technology form the foundation of a product portfolio comprising in-die metrology, actinic qualification, repair and tuning of photomasks.

For more information, please click here

Contacts:
SEMATECH Media Contact:
Erica McGill
518-649-1041


Carl Zeiss Media Contact:
Nadine Schütze
+49 3641 64 2242

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Chip Technology

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Tools

The nanoscopic structure that locks up our genes January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Silver nanoparticles take spectroscopy to new dimension: A new way of organizing nanostructures has boosted Raman signals by a hundred thousand times to better identify and characterize different molecules January 2nd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project