Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'White graphene' to the rescue

Caption: A transmission electron microscope image, left, shows one-atom-thick layers of hexagonal boron nitride edge-on. At right is a selected area electron diffraction of an h-BN layer. (Credit Li Song/Rice University)
Caption: A transmission electron microscope image, left, shows one-atom-thick layers of hexagonal boron nitride edge-on. At right is a selected area electron diffraction of an h-BN layer. (Credit Li Song/Rice University)

Abstract:
Hexagonal boron nitride sheets may help graphene supplant silicon

'White graphene' to the rescue

Houston, TX | Posted on July 30th, 2010

What researchers might call "white graphene" may be the perfect sidekick for the real thing as a new era unfolds in nanoscale electronics.

But single-atom-thick layers of hexagonal boron nitride (h-BN), the material under intense study at Rice University's world-class Department of Mechanical Engineering and Materials Science, are likely to find some macro applications as well.

Researchers in the lab of Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, have figured out how to make sheets of h-BN, which could turn out to be the complementary apple to graphene's orange.

The results were reported last week in the online journal Nano Letters.

Graphene, touted as a possible successor to silicon in microelectronics applications, is the new darling of research labs that hope to take advantage of its superb electronic properties.

Hexagonal boron nitride, on the other hand, is an insulator. Earlier this year, Rice postdoctoral researchers in Ajayan's group found a way to implant islands of h-BN into sheets of graphene, a unique way to exert a level of control over the sheet's electronic character.

Now the team, led by primary author Li Song, has figured out how to deposit sheets of pure h-BN, which is naturally white in bulk form, anywhere from one to five atoms thick on a copper substrate. The material can then be transferred to other substrates.

They used a chemical vapor deposition process to grow the h-BN sheets on a 5-by-5 centimeter copper backing at temperatures around 1,000 degrees Celsius. The sheets could then be stripped from the copper and placed on a variety of substrates.

Ultimately, Song sees h-BN sheets finding wide use as a highly effective insulator in graphene-based electronics, another stride on the quick-step march toward the replacement of silicon with materials that could push beyond the boundaries of Moore's Law, which states the number of transistors that can be placed on an integrated circuit doubles about every two years.

He said it should be also possible to draw microscopic patterns of graphene and h-BN, which could be useful in creating nanoscale field-effect transistors, quantum capacitors or biosensors.

Strength tests using the tip of an atomic force microscope to push h-BN into holes in a silicon substrate showed it to be highly elastic and nearly as strong as graphene, the single-atom form of pure carbon.

Song said the size of h-BN sheets is limited only by the size of the copper foil and furnace used to grow it. The process should be adaptable to the same kind of roll-to-roll technique recently used to form 30-inch sheets of graphene. "If you have a huge furnace, you can go large," he said.

Co-authors of the paper with Song and Ajayan are Boris Yakobson, a professor in mechanical engineering and materials science and of chemistry; Jun Lou, an assistant professor in mechanical engineering and materials science; postdoctoral research associates Lijie Ci and Pavel Sorokin; and graduate student Hao Lu, all of Rice; Chuanhong Jin of the National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan; visiting student Jie Ni of Tsinghua University, China; and Alexander Kvashnin and Dmitry Kvashnin of Siberian Federal University of Krasnoyarsk, Russia.

The research was funded by Rice University, the Office of Naval Research MURI program on graphene, the Basic Energy Science division of the Department of Energy, the National Science Foundation, the Welch Foundation, the International Balzan Foundation and the Chinese State Scholarship Fund.

Read the abstract at pubs.acs.org/doi/abs/10.1021/nl1022139

####

For more information, please click here

Contacts:
David Ruth
Director of National Media Relations
Rice University
Houston, Texas
(W) 713-348-6327
(C) 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Possible Futures

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Chip Technology

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanoelectronics

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic