Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Patents proliferating for serial inventor Robert Blick

Electrical and Computer Engineering Professor Robert Blick is developing more cost-effective ways for pharmaceutical manufacturers to understand how drugs interact with the ion channels in cellular membranes. Photo courtesy of WARF.
Electrical and Computer Engineering Professor Robert Blick is developing more cost-effective ways for pharmaceutical manufacturers to understand how drugs interact with the ion channels in cellular membranes. Photo courtesy of WARF.

If you think about a patent as the starting line for a race, you'll have some idea of the competitive fire that fuels serial inventor Robert Blick, the Lynn H. Matthias Professor in Electrical and Computer Engineering.

Patents proliferating for serial inventor Robert Blick

Madison, WI | Posted on July 30th, 2010

With six patents assigned to Wisconsin Alumni Research Foundation and 11 more pending in the U.S. and abroad, Blick doesn't see intellectual property as his end goal. Instead, filing for a patent represents the point at which ideas can begin to compete for licensing interest, development funding and commercialization.

The finish line comes into sight when society gains a beneficial new technology, jobs are created and a stream of funding returns to the inventor to support future research.

"Some inventors want to hang on to their work and not let go, but that's not the way the business works," Blick says. "The real challenge comes in sharing your ideas and letting others improve on them, then turning around and using your ideas to help someone else. You can't just stand at the starting line and be impressed that you've gotten there."

With a background in electrical and computer engineering, Blick's inventions range from a nanomechanical computer to a process that improves fabrication of nanomechanical devices.

His current research lies at the intersection of engineering and physiology and addresses the need for better ways to measure the functions of ion channels—proteins that act as pores in cellular membranes and permit the selective passage of ions to support cell functions.

Blick and other scientists estimate that some 50 percent of all diseases are the result of malfunctioning ion channels. In addition to carrying the potassium, sodium and calcium ions and accompanying electrical currents in and out of cells, ion channels aid in chemical signaling, regulation of pH and other functions.

A growing number of pharmaceutical products now under development are being designed to regulate or restore ion channel functions. But testing these formulations in a way that allows drug makers to understand and fine-tune the molecular interactions is costly and time consuming.

A traditional method, called "patch-clamping," requires a skilled experimenter to manipulate a microscopic glass pipette to record data from a single cell. Blick's lab has developed minute sensors that can detect and analyze molecular interactions—including the slight electrical currents associated with proper ion channel functioning—on a much wider scale. The glass chips and microsensor arrays can be produced in large quantities and used to efficiently measure drug interactions with the ion channels.

"The thought was that if you had a high throughput method that would allow you to listen in to how well an ion channel is working, you would be able to add a certain drug and characterize the interactions meticulously," Blick says. "Then, you are able to introduce robotics instead of the highly educated researchers needed for the traditional patch-clamping process. That is where the big money savings is. It is a clear benefit to help cure those diseases related to ion channels, not to mention all of the cool science you can do on the side."

If Blick is deeply committed to the science, he is also thoroughly acquainted with the process of transferring technology from the lab to the private sector. A native of Germany, Blick's earlier work provided the scientific foundation for Nanion Technologies in Munich, a maker of devices that also improve upon patch-clamping techniques.

Now, he is interested in starting a U.S. company called Doweido to advance and commercialize other aspects of the research. Blick's plan is to license his own technology back from WARF as the intellectual property foundation for the business.

"It's set to grow very slowly, and I don't plan to have any more than one, two or three employees over the next year," he says. "Usually it's best to establish a sales background and customer base before trying to expand and seeking venture capital. But I think the company could make a good contribution and it would certainly pay back the fees for the lawyers and intellectual property effort."

Blick credits WARF for an extensive network of industry contacts and legal expertise that helps scientists and society make the most of groundbreaking discoveries.

"They have very good lawyers, which is an often underestimated point among scientists, because when the patent lawyer is good, they have an understanding of the science and are able to add claims to the patent filing that the original researcher may not have considered," Blick says. "They have a good system and they are also very well set up with connections in the Midwest and to the coasts. It's a blessing for the university."


For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018


Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017


Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Patents/IP/Tech Transfer/Licensing

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project