Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Patents proliferating for serial inventor Robert Blick

Electrical and Computer Engineering Professor Robert Blick is developing more cost-effective ways for pharmaceutical manufacturers to understand how drugs interact with the ion channels in cellular membranes. Photo courtesy of WARF.
Electrical and Computer Engineering Professor Robert Blick is developing more cost-effective ways for pharmaceutical manufacturers to understand how drugs interact with the ion channels in cellular membranes. Photo courtesy of WARF.

Abstract:
If you think about a patent as the starting line for a race, you'll have some idea of the competitive fire that fuels serial inventor Robert Blick, the Lynn H. Matthias Professor in Electrical and Computer Engineering.

Patents proliferating for serial inventor Robert Blick

Madison, WI | Posted on July 30th, 2010

With six patents assigned to Wisconsin Alumni Research Foundation and 11 more pending in the U.S. and abroad, Blick doesn't see intellectual property as his end goal. Instead, filing for a patent represents the point at which ideas can begin to compete for licensing interest, development funding and commercialization.

The finish line comes into sight when society gains a beneficial new technology, jobs are created and a stream of funding returns to the inventor to support future research.

"Some inventors want to hang on to their work and not let go, but that's not the way the business works," Blick says. "The real challenge comes in sharing your ideas and letting others improve on them, then turning around and using your ideas to help someone else. You can't just stand at the starting line and be impressed that you've gotten there."

With a background in electrical and computer engineering, Blick's inventions range from a nanomechanical computer to a process that improves fabrication of nanomechanical devices.

His current research lies at the intersection of engineering and physiology and addresses the need for better ways to measure the functions of ion channels—proteins that act as pores in cellular membranes and permit the selective passage of ions to support cell functions.

Blick and other scientists estimate that some 50 percent of all diseases are the result of malfunctioning ion channels. In addition to carrying the potassium, sodium and calcium ions and accompanying electrical currents in and out of cells, ion channels aid in chemical signaling, regulation of pH and other functions.

A growing number of pharmaceutical products now under development are being designed to regulate or restore ion channel functions. But testing these formulations in a way that allows drug makers to understand and fine-tune the molecular interactions is costly and time consuming.

A traditional method, called "patch-clamping," requires a skilled experimenter to manipulate a microscopic glass pipette to record data from a single cell. Blick's lab has developed minute sensors that can detect and analyze molecular interactions—including the slight electrical currents associated with proper ion channel functioning—on a much wider scale. The glass chips and microsensor arrays can be produced in large quantities and used to efficiently measure drug interactions with the ion channels.

"The thought was that if you had a high throughput method that would allow you to listen in to how well an ion channel is working, you would be able to add a certain drug and characterize the interactions meticulously," Blick says. "Then, you are able to introduce robotics instead of the highly educated researchers needed for the traditional patch-clamping process. That is where the big money savings is. It is a clear benefit to help cure those diseases related to ion channels, not to mention all of the cool science you can do on the side."

If Blick is deeply committed to the science, he is also thoroughly acquainted with the process of transferring technology from the lab to the private sector. A native of Germany, Blick's earlier work provided the scientific foundation for Nanion Technologies in Munich, a maker of devices that also improve upon patch-clamping techniques.

Now, he is interested in starting a U.S. company called Doweido to advance and commercialize other aspects of the research. Blick's plan is to license his own technology back from WARF as the intellectual property foundation for the business.

"It's set to grow very slowly, and I don't plan to have any more than one, two or three employees over the next year," he says. "Usually it's best to establish a sales background and customer base before trying to expand and seeking venture capital. But I think the company could make a good contribution and it would certainly pay back the fees for the lawyers and intellectual property effort."

Blick credits WARF for an extensive network of industry contacts and legal expertise that helps scientists and society make the most of groundbreaking discoveries.

"They have very good lawyers, which is an often underestimated point among scientists, because when the patent lawyer is good, they have an understanding of the science and are able to add claims to the patent filing that the original researcher may not have considered," Blick says. "They have a good system and they are also very well set up with connections in the Midwest and to the coasts. It's a blessing for the university."

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Announcements

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Notes Mersana's Collaboration Agreement With Subsidiary of Takeda Pharmaceutical Co. April 8th, 2014

Nanoparticles cause cancer cells to self-destruct April 3rd, 2014

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE